SULLIVAN

PRECALCULUS

ELEVENTH EDITION

Get the Most Out of MyLab Math 介ाताI|

MyLab™ Math is the teaching and learning platform that empowers instructors to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab Math personalizes the learning experience and improves results for each student.

- Flexible platform—Your course is unique. Whether you'd like to build your own assignments, teach many sections, or set prerequisites, you have flexibility to easily create your course to fit your needs.
- Personalized learning-Each student learns at a different pace. Personalized learning pinpoints the areas each student needs to practice, giving every student the support they need - when and where they need it - to be successful. A variety of options to personalize learning in MyLab Math:
- With Companion Study Plan Assignments you can assign the Study Plan as a prerequisite to a test or quiz, guiding students through the concepts they need to master.
- With Personalized Homework, students take a quiz or test and receive a subsequent homework assignment that is personalized based on their performance. This way, students can focus on just the topics they have not yet mastered.

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations. You may wonder if you can learn it all in time. Don't worry-your concerns are normal. This textbook was written with you in mind. If you attend class, work hard, and read and study this text, you will build the knowledge and skills you need to be successful. Here's how you can use the text to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't ... the text has a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class if you do this.

Use the Features

I use many different methods in the classroom to communicate. Those methods, when incorporated into the text, are called "features." The features serve many purposes, from providing timely review of material you learned before (just when you need it) to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this text. Refer to "Prepare for Class," "Practice," and "Review" at the front of the text. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your text.

Please do not hesitate to contact me through Pearson Education, with any questions, comments, or suggestions for improving this text. I look forward to hearing from you, and good luck with all of your studies.

This page intentionally left blank

Prepare for Class "Read the Book"

Feature	Description	Benefit	Page
Every Chapter Opener begins with ...			
Chapter-Opening Topic \& Project	Each chapter begins with a discussion of a topic of current interest and ends with a related project.	The Project lets you apply what you learned to solve a problem related to the topic.	258
Internet-Based Projects	The projects allow for the integration of spreadsheet technology that you will need to be a productive member of the workforce.	The projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest.	360
Every Section begins with ...			
LEARNING OBJECTIVES 2	Each section begins with a list of objectives. Objectives also appear in the text where the objective is covered.	These focus your study by emphasizing what's most important and where to find it.	279
Sections contain . .			
PREPARING FOR THIS SECTION	Most sections begin with a list of key concepts to review with page numbers.	Ever forget what you've learned? This feature highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.	279
Now Work the 'Are You Prepared?' Problems	Problems that assess whether you have the prerequisite knowledge for the upcoming section.	Not sure you need the Preparing for This Section review? Work the 'Are You Prepared?' problems. If you get one wrong, you'll know exactly what you need to review and where to review it!	279, 290
Now Work PROBLEMS	These follow most examples and direct you to a related exercise.	We learn best by doing. You'll solidify your understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.	286, 291
WARNING	Warnings are provided in the text.	These point out common mistakes and help you to avoid them.	313
Exploration and Seeing the Concept	These graphing utility activities foreshadow a concept or solidify a concept just presented.	You will obtain a deeper and more intuitive understanding of theorems and definitions.	274, 299
In Words	These provide alternative descriptions of select definitions and theorems.	Does math ever look foreign to you? This feature translates math into plain English.	296
\langle Calculus	These appear next to information essential for the study of calculus.	Pay attention-if you spend extra time now, you'll do better later!	$\begin{array}{r} 54,263, \\ 286 \end{array}$
SHOWCASE EXAMPLES	These examples provide "how-to" instruction by offering a guided, step-by-step approach to solving a problem.	With each step presented on the left and the mathematics displayed on the right, you can immediately see how each step is used.	225
Model It! Examples and Problems	These examples and problems require you to build a mathematical model from either a verbal description or data. The homework Model It! problems are marked by purple headings.	It is rare for a problem to come in the form "Solve the following equation." Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models to find a solution to the problem.	303, 332
NEW! Need to Review?	These margin notes provide a just-intime reminder of a concept needed now, but covered in an earlier section of the book. Each note is backreferenced to the chapter, section and page where the concept was originally discussed.	Sometimes as you read, you encounter a word or concept you know you've seen before, but don't remember exactly what it means. This feature will point you to where you first learned the word or concept. A quick review now will help you see the connection to what you are learning for the first time and make remembering easier the next time.	272

Practice "Work the Problems"

Feature	Description	Benefit	Page
'Are You Prepared?' Problems	These assess your retention of the prerequisite material you'll need. Answers are given at the end of the section exercises. This feature is related to the Preparing for This Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	296, 304
Concepts and Vocabulary	These short-answer questions, mainly Fill-in-the-Blank, Multiple-Choice and True/False items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	290
Skill Building	Correlated with section examples, these problems provide straightforward practice.	It's important to dig in and develop your skills. These problems provide you with ample opportunity to do so.	290-292
Applications and Extensions	These problems allow you to apply your skills to real-world problems. They also allow you to extend concepts learned in the section.	You will see that the material learned within the section has many uses in everyday life.	293-295
NEW! Challenge Problems	These problems have been added in most sections and appear at the end of the Application and Extensions exercises. They are intended to be thought-provoking, requiring some ingenuity to solve.	Are you a student who likes being challenged? Then the Challenge Problems are for you! Your professor might also choose to assign a challenge problem as a group project. The ability to work with a team is a highly regarded skill in the working world.	295
Explaining Concepts: Discussion and Writing	"Discussion and Writing" problems are colored red. They support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging, but you'll get out what you put in.	295
Retain Your Knowledge	These problems allow you to practice content learned earlier in the course.	Remembering how to solve all the different kinds of problems that you encounter throughout the course is difficult. This practice helps you remember.	295
Now Work PROBLEMS	Many examples refer you to a related homework problem. These related problems are marked by a pencil and orange numbers.	If you get stuck while working problems, look for the closest Now Work problem, and refer to the related example to see if it helps.	$\begin{array}{r} 288,291, \\ 292 \end{array}$
Review Exercises	Every chapter concludes with a comprehensive list of exercises to pratice. Use the list of objectives to determine the objective and examples that correspond to the problems.	Work these problems to ensure that you understand all the skills and concepts of the chapter. Think of it as a comprehensive review of the chapter.	355-358

Review "Study for Quizzes and Tests"

Feature	Description	Benefit	Page
The Chapter Review at the end of each chapter contains . . .			
Things to Know	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most important material in the chapter!	353-354
You Should Be Able to ...	Contains a complete list of objectives by section, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll have mastered the key material. If you get something wrong, go back and work through the objective listed and try again.	354-355
Review Exercises	These provide comprehensive review and practice of key skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems combine exercises from all sections, giving you a comprehensive review in one place.	355-358
Chapter Test	About 15-20 problems that can be taken as a Chapter Test. Be sure to take the Chapter Test under test conditions-no notes!	Be prepared. Take the sample practice test under test conditions. This will get you ready for your instructor's test. If you get a problem wrong, you can watch the Chapter Test Prep Video.	358
Cumulative Review	These problem sets appear at the end of each chapter, beginning with Chapter 2. They combine problems from previous chapters, providing an ongoing cumulative review. When you use them in conjunction with the Retain Your Knowledge problems, you will be ready for the final exam.	These problem sets are really important. Completing them will ensure that you are not forgetting anything as you go. This will go a long way toward keeping you primed for the final exam.	359
Chapter Projects	The Chapter Projects apply to what you've learned in the chapter. Additional projects are available on the Instructor's Resource Center (IRC).	The Chapter Projects give you an opportunity to use what you've learned in the chapter to the opening topic. If your instructor allows, these make excellent opportunities to work in a group, which is often the best way to learn math.	360
Internet-Based Projects	In selected chapters, a Web-based project is given.	These projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest by using the Internet to research and collect data.	360

To the Memory of

 My Mother and Father
Precalculus

Eleventh Edition

Michael Sullivan

Chicago State University

Pearson

Director, Portfolio Management: Anne Kelly
Senior Portfolio Management Analyst: Dawn Murrin
Portfolio Management Administrator: Joseph Colella
Manager, Courseware QA: Mary Durnwald
VP, Production \& Digital Studio: Ruth Berry
Manager Producer: Vicki Dreyfus
Associate Producer: Stacey Miller
Manager, Content Development: Kristina Evans
Senior Content Developer: Megan M. Burns
Managing Producer: Scott Disanno
Content Producer: Peggy McMahon
Product Marketing Director: Erin Kelly

Product Marketer for Precalculus: Stacey Sveum
Product Marketing Assistant: Shannon McCormack
Field Marketing Manager: Peggy Lucas
Senior Publishing Services Analyst, Author Support: Joe Vetere
Manager, Rights/ Permissions: Gina Cheselka
Manager Design: Blair Brown
Manufacturing Buyer: Carol Melville, LSC Communications
Cover Illustration: Tamara Newnam
Cover Design: Jerilyn Bockorick, Pearson CSC
Full Service Vendor: Pearson, CSC
Full Service Project Management: Pearson CSC, Rose Kernan
Composition: Pearson CSC

Copyright © 2020, 2016, 2012 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030.
All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

Attributions of third party content appear on page $\mathrm{C}-1$, which constitutes an extension of this copyright page.
MICROSOFT ${ }^{\circledR}$ AND WINDOWS ${ }^{\circledR}$ ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A.AND OTHER COUNTRIES. SCREEN SHOTS AND ICONS REPRINTED WITH PERMISSION FROM THE MICROSOFT CORPORATION. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE,TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

PEARSON, ALWAYS LEARNING, and MYLAB ${ }^{\text {TM }}$ MATH are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Sullivan, Michael, 1942- author.
Title: Precalculus / Michael Sullivan (Chicago State University).
Description: Eleventh edition. | Hoboken, NJ : Pearson, [2020] | Includes index.
Identifiers: LCCN 2019008620| ISBN 9780135189405 (annotated instructors edition) | ISBN 9780135189535 (student edition) | ISBN 0135189535 | ISBN 0135189403
Subjects: LCSH: Precalculus--Textbooks. | Algebra--Textbooks. |
Trigonometry--Textbooks.
Classification: LCC QA154.3 .S85 2020 | DDC 515--dc23
LC record available at https://lcen.loc.gov/2019008620
119

About the Cover:

The image on this book's cover was inspired by a talk given by Michael Sullivan III: Is Mathematical Talent Overrated?

The answer is yes. In mathematics, innate talent plays a much smaller role than grit and motivation as you work toward your goal. If you put in the time and hard work, you can succeed in your math course - just as an athlete must work to medal in their sport.

ISBN 10: 0135189403

Contents

Three Distinct Series XX
The Flagship Series xxi
Preface to the Instructor xxii
Get the Most Out of MyLab Math xxvii
Resources for Success xxviii
Applications Index xxx
1 Graphs 1
1.1 The Distance and Midpoint Formulas 2
Use the Distance Formula - Use the Midpoint Formula
1.2 Graphs of Equations in Two Variables; Intercepts; Symmetry 9Graph Equations by Plotting Points • Find Intercepts from a Graph- Find Intercepts from an Equation • Test an Equation for Symmetry withRespect to the x-Axis, the y-Axis, and the Origin • Know How to GraphKey Equations
1.3 Lines 20
Calculate and Interpret the Slope of a Line • Graph Lines Given a Point and the Slope • Find the Equation of a Vertical Line • Use the Point-Slope Form of a Line; Identify Horizontal Lines • Use the Slope-Intercept Form of a Line • Find the Equation of a Line Given Two Points • Graph Lines Written in General Form Using Intercepts \bullet Find Equations of Parallel Lines

- Find Equations of Perpendicular Lines
1.4 Circles 35
Write the Standard Form of the Equation of a Circle • Graph a Circle
- Work with the General Form of the Equation of a Circle
Chapter Review 42
Chapter Test 44
Chapter Project 44
2 Functions and Their Graphs 46
2.1 Functions 47
Describe a Relation • Determine Whether a Relation Represents a Function
- Use Function Notation; Find the Value of a Function • Find the Difference Quotient of a Function • Find the Domain of a Function Defined by an Equation • Form the Sum, Difference, Product, and Quotient of Two Functions
2.2 The Graph of a Function 63
Identify the Graph of a Function - Obtain Information from or about the Graph of a Function
2.3 Properties of Functions 73
Identify Even and Odd Functions from a Graph • Identify Even and Odd Functions from an Equation • Use a Graph to Determine Where a Function is Increasing, Decreasing, or Constant • Use a Graph to Locate Local
Maxima and Local Minima • Use a Graph to Locate the Absolute Maximumand the Absolute Minimum • Use a Graphing Utility to Approximate LocalMaxima and Local Minima and to Determine Where a Function Is Increasingor Decreasing • Find the Average Rate of Change of a Function
2.4 Library of Functions; Piecewise-defined Functions 86
Graph the Functions Listed in the Library of Functions • Analyze a Piecewise-defined Function
2.5 Graphing Techniques: Transformations 98
Graph Functions Using Vertical and Horizontal Shifts • Graph Functions Using Compressions and Stretches • Graph Functions Using Reflections about the x-Axis and the y-Axis
2.6 Mathematical Models: Building Functions 111Build and Analyze Functions
Chapter Review 117
Chapter Test 121
Cumulative Review 122
Chapter Projects 122
3 Linear and Quadratic Functions 124
3.1 Properties of Linear Functions and Linear Models 125
Graph Linear Functions - Use Average Rate of Change to Identify Linear Functions • Determine Whether a Linear Function Is Increasing, Decreasing, or Constant • Build Linear Models from Verbal Descriptions
3.2 Building Linear Models from Data 135
Draw and Interpret Scatter Plots \bullet Distinguish between Linear and Nonlinear Relations • Use a Graphing Utility to Find the Line of Best Fit
3.3 Quadratic Functions and Their Properties 143
Graph a Quadratic Function Using Transformations • Identify the Vertex and Axis of Symmetry of a Parabola - Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts • Find a Quadratic Function Given Its Vertex and One Other Point • Find the Maximum or Minimum Value of a Quadratic Function
3.4 Building Quadratic Models from Verbal Descriptions and from Data 156
Build Quadratic Models from Verbal Descriptions • Build Quadratic Models from Data
3.5 Inequalities Involving Quadratic Functions 165
Solve Inequalities Involving a Quadratic Function
Chapter Review 169
Chapter Test 171
Cumulative Review 172
Chapter Projects 173
4 Polynomial and Rational Functions 174
4.1 Polynomial functions 175
Identify Polynomial Functions and Their Degree - Graph Polynomial Functions Using Transformations • Identify the Real Zeros of a Polynomial Function and Their Multiplicity
4.2 Graphing Polynomial Functions; Models 190
Graph a Polynomial Function • Graph a Polynomial Function Using a Graphing Utility • Build Cubic Models from Data
4.3 Properties of Rational Functions 198
Find the Domain of a Rational Function • Find the Vertical Asymptotes of a Rational Function • Find a Horizontal or an Oblique Asymptote of a Rational Function
4.4 The Graph of a Rational Function 209
Graph a Rational Function • Solve Applied Problems Involving Rational Functions
4.5 Polynomial and Rational Inequalities 224
Solve Polynomial Inequalities • Solve Rational Inequalities
4.6 The Real Zeros of a Polynomial function 231
Use the Remainder and Factor Theorems • Use Descartes' Rule of Signs to Determine the Number of Positive and the Number of Negative Real Zeros of a Polynomial Function • Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function - Find the Real Zeros of a Polynomial Function • Solve Polynomial Equations • Use the Theorem for Bounds on Zeros • Use the Intermediate Value Theorem
4.7 Complex Zeros; Fundamental Theorem of Algebra 245
Use the Conjugate Pairs Theorem • Find a Polynomial Function with Specified Zeros • Find the Complex Zeros of a Polynomial Function
Chapter Review 252
Chapter Test 255
Cumulative Review 256
Chapter Projects 257
5 Exponential and Logarithmic Functions 258
5.1 Composite Functions 259
Form a Composite Function • Find the Domain of a Composite Function
5.2 One-to-One Functions; Inverse Functions 267
Determine Whether a Function Is One-to-One • Obtain the Graph of the Inverse Function from the Graph of a One-to-One Function
- Verify an Inverse Function • Find the Inverse of a Function Defined by an Equation
5.3 Exponential Functions 279
Evaluate Exponential Functions • Graph Exponential Functions
- Define the Number $e \bullet$ Solve Exponential Equations
5.4 Logarithmic Functions 296
Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements • Evaluate Logarithmic Expressions - Determine the Domain of a Logarithmic Function - Graph Logarithmic Functions • Solve Logarithmic Equations
5.5 Properties of Logarithms 309
Work with the Properties of Logarithms • Write a Logarithmic Expression as a Sum or Difference of Logarithms • Write a Logarithmic Expression as a Single Logarithm • Evaluate Logarithms Whose Base Is Neither 10 Nor e
5.6 Logarithmic and Exponential Equations 318
Solve Logarithmic Equations • Solve Exponential Equations • Solve Logarithmic and Exponential Equations Using a Graphing Utility
5.7 Financial Models 325
Determine the Future Value of a Lump Sum of Money • Calculate Effective Rates of Return • Determine the Present Value of a Lump Sum of Money - Determine the Rate of Interest or the Time Required to Double a Lump Sum of Money
5.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 335
Model Populations That Obey the Law of Uninhibited Growth • Model Populations That Obey the Law of Uninhibited Decay • Use Newton's Law of Cooling • Use Logistic Models
5.9 Building Exponential, Logarithmic, and Logistic Models from Data 346
Build an Exponential Model from Data • Build a Logarithmic Model from Data • Build a Logistic Model from Data
Chapter Review 353
Chapter Test 358
Cumulative Review 359
Chapter Projects 360
6 Trigonometric Functions 361
6.1 Angles, Arc Length, and Circular Motion 362
Angles and Degree Measure - Convert between Decimal and Degree, Minute, Second Measures for Angles • Find the Length of an Arc of a Circle - Convert from Degrees to Radians and from Radians to Degrees • Find the Area of a Sector of a Circle •Find the Linear Speed of an Object Traveling in Circular Motion
6.2 Trigonometric Functions: Unit Circle Approach 375
Find the Exact Values of the Trigonometric Functions Using a Point on the Unit Circle • Find the Exact Values of the Trigonometric Functions of Quadrantal Angles • Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{4}=45^{\circ} \bullet$ Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{6}=30^{\circ}$ and $\frac{\pi}{3}=60^{\circ} \bullet$ Find the Exact Values of the Trigonometric Functions for Integer Multiples of $\frac{\pi}{6}=30^{\circ}, \frac{\pi}{4}=45^{\circ}$, and $\frac{\pi}{3}=60^{\circ} \bullet$ Use a Calculator to Approximate the Value of a Trigonometric Function • Use a Circle of Radius r to Evaluate the Trigonometric Functions
6.3 Properties of the Trigonometric Functions 392
Determine the Domain and the Range of the Trigonometric Functions - Determine the Period of the Trigonometric Functions - Determine the Signs of the Trigonometric Functions in a Given Quadrant • Find the Values of the Trigonometric Functions Using Fundamental Identities • Find the Exact Values of the Trigonometric Functions of an Angle Given One of the Functions and the Quadrant of the Angle • Use Even-Odd Properties to Find the Exact Values of the Trigonometric Functions
6.4 Graphs of the Sine and Cosine Functions 407
Graph the Sine Function $y=\sin x$ and Functions of the Form $y=A \sin (\omega x) \bullet$ Graph the Cosine Function $y=\cos x$ and Functions of the Form $y=A \cos (\omega x)$ - Determine the Amplitude and Period of Sinusoidal Functions • Graph Sinusoidal Functions Using Key Points - Find an Equation for a Sinusoidal Graph
6.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 422
Graph the Tangent Function $y=\tan x$ and the Cotangent Function $y=\cot x \bullet$ Graph Functions of the Form $y=A \tan (\omega x)+B$ and $y=A \cot (\omega x)+B \cdot$ Graph the Cosecant Function $y=\csc x$ and the Secant Function $y=\sec x \bullet$ Graph Functions of the Form $y=A \csc (\omega x)+B$ and $y=A \sec (\omega x)+B$
6.6 Phase Shift; Sinusoidal Curve Fitting 429
Graph Sinusoidal Functions of the Form $y=A \sin (\omega x-\phi)+B$
- Build Sinusoidal Models from Data
Chapter Review 441
Chapter Test 446
Cumulative Review 447
Chapter Projects 448
7 Analytic Trigonometry 449
7.1 The Inverse Sine, Cosine, and Tangent Functions 450
Define the Inverse Sine Function - Find the Value of an Inverse Sine Function • Define the Inverse Cosine Function • Find the Value of an Inverse Cosine Function • Define the Inverse Tangent Function \bullet Find the Value of an Inverse Tangent Function • Use Properties of Inverse Functions to Find Exact Values of Certain Composite Functions • Find the Inverse Function of a Trigonometric Function • Solve Equations Involving Inverse Trigonometric Functions
7.2 The Inverse Trigonometric Functions (Continued) 463
Define the Inverse Secant, Cosecant, and Cotangent Functions • Find the Value of Inverse Secant, Cosecant, and Cotangent Functions •Find the Exact Value of Composite Functions Involving the Inverse Trigonometric Functions • Write a Trigonometric Expression as an Algebraic Expression
7.3 Trigonometric Equations
Solve Equations Involving a Single Trigonometric Function • Solve Trigonometric Equations Using a Calculator • Solve Trigonometric Equations Quadratic in Form • Solve Trigonometric Equations Using Fundamental Identities • Solve Trigonometric Equations Using a Graphing Utility469
7.4 Trigonometric Identities 479
Use Algebra to Simplify Trigonometric Expressions • Establish Identities
7.5 Sum and Difference Formulas 487
Use Sum and Difference Formulas to Find Exact Values • Use Sum and Difference Formulas to Establish Identities • Use Sum and Difference Formulas Involving Inverse Trigonometric Functions • Solve Trigonometric Equations Linear in Sine and Cosine
7.6 Double-angle and Half-angle Formulas 500
Use Double-angle Formulas to Find Exact Values • Use Double-angle Formulas to Establish Identities • Use Half-angle Formulas to Find Exact Values
7.7 Product-to-Sum and Sum-to-Product Formulas 511
Express Products as Sums • Express Sums as Products
Chapter Review 515
Chapter Test 518
Cumulative Review 519
Chapter Projects 520
Applications of Trigonometric Functions521
8.1 Right Triangle Trigonometry; Applications 522
Find the Value of Trigonometric Functions of Acute Angles Using Right Triangles • Use the Complementary Angle Theorem • Solve Right Triangles
- Solve Applied Problems
8.2 The Law of Sines 535
Solve SAA or ASA Triangles • Solve SSA Triangles • Solve Applied Problems
8.3 The Law of Cosines 546
Solve SAS Triangles • Solve SSS Triangles • Solve Applied Problems
8.4 Area of a Triangle 553
Find the Area of SAS Triangles • Find the Area of SSS Triangles
8.5 Simple Harmonic Motion; Damped Motion; Combining Waves 559Build a Model for an Object in Simple Harmonic Motion • Analyze SimpleHarmonic Motion • Analyze an Object in Damped Motion • Graph theSum of Two Functions
Chapter Review 569
Chapter Test 572
Cumulative Review 573
Chapter Projects 573
9 Polar Coordinates; Vectors 575
9.1 Polar Coordinates 576
Plot Points Using Polar Coordinates - Convert from Polar Coordinates to Rectangular Coordinates \bullet Convert from Rectangular Coordinates to Polar Coordinates \bullet Transform Equations between Polar and Rectangular Forms
9.2 Polar Equations and Graphs 585
Identify and Graph Polar Equations by Converting to Rectangular Equations • Test Polar Equations for Symmetry • Graph Polar Equations by Plotting Points
9.3 The Complex Plane; De Moivre's Theorem 600
Plot Points in the Complex Plane - Convert a Complex Number between Rectangular Form and Polar Form or Exponential Form • Find Products and Quotients of Complex Numbers • Use De Moivre's Theorem - Find Complex Roots
9.4 Vectors 609
Graph Vectors • Find a Position Vector • Add and Subtract Vectors Algebraically • Find a Scalar Multiple and the Magnitude of a Vector
- Find a Unit Vector • Find a Vector from Its Direction and Magnitude - Model with Vectors
9.5 The Dot Product 624
Find the Dot Product of Two Vectors • Find the Angle between Two Vectors
- Determine Whether Two Vectors Are Parallel • Determine Whether Two Vectors Are Orthogonal • Decompose a Vector into Two Orthogonal Vectors
- Compute Work
9.6 Vectors in Space 631
Find the Distance between Two Points in Space •Find Position Vectors in Space • Perform Operations on Vectors • Find the Dot Product • Find the Angle between Two Vectors \bullet Find the Direction Angles of a Vector
9.7 The Cross Product 641
Find the Cross Product of Two Vectors • Know Algebraic Properties of the Cross Product • Know Geometric Properties of the Cross Product • Find a Vector Orthogonal to Two Given Vectors • Find the Area of a Parallelogram
Chapter Review 647
Chapter Test 650
Cumulative Review 651
Chapter Projects 651
10 Analytic Geometry 652
10.1 Conics 653
Know the Names of the Conics
10.2 The Parabola 654
Analyze Parabolas with Vertex at the Origin • Analyze Parabolas with Vertex at $(h, k) \bullet$ Solve Applied Problems Involving Parabolas
10.3 The Ellipse 663
Analyze Ellipses with Center at the Origin • Analyze Ellipses with Center at $(h, k) \bullet$ Solve Applied Problems Involving Ellipses
10.4 The Hyperbola 673
Analyze Hyperbolas with Center at the Origin • Find the Asymptotes of a Hyperbola • Analyze Hyperbolas with Center at $(h, k) \bullet$ Solve Applied Problems Involving Hyperbolas
10.5 Rotation of Axes; General Form of a Conic 686
Identify a Conic • Use a Rotation of Axes to Transform Equations - Analyze an Equation Using a Rotation of Axes • Identify Conics without Rotating the Axes
10.6 Polar Equations of Conics 694
Analyze and Graph Polar Equations of Conics • Convert the Polar Equation of a Conic to a Rectangular Equation
10.7 Plane Curves and Parametric Equations 701
Graph Parametric Equations • Find a Rectangular Equation for a Plane Curve Defined Parametrically • Use Time as a Parameter in Parametric Equations • Find Parametric Equations for Plane Curves Defined by Rectangular Equations
Chapter Review 714
Chapter Test 716
Cumulative Review 717
Chapter Projects 717
11 Systems of Equations and Inequalities 719
11.1 Systems of Linear Equations: Substitution and Elimination 720
Solve Systems of Equations by Substitution - Solve Systems of Equations by Elimination • Identify Inconsistent Systems of Equations Containing Two Variables • Express the Solution of a System of Dependent Equations Containing Two Variables • Solve Systems of Three Equations Containing Three Variables • Identify Inconsistent Systems of Equations Containing Three Variables • Express the Solution of a System of Dependent Equations Containing Three Variables
11.2 Systems of Linear Equations: Matrices 734Write the Augmented Matrix of a System of Linear Equations- Write the System of Equations from the Augmented Matrix- Perform Row Operations on a Matrix • Solve a System of LinearEquations Using Matrices
11.3 Systems of Linear Equations: Determinants 748
Evaluate 2 by 2 Determinants • Use Cramer's Rule to Solve a System of Two Equations Containing Two Variables • Evaluate 3 by 3 Determinants
- Use Cramer's Rule to Solve a System of Three Equations Containing Three Variables • Know Properties of Determinants
11.4 Matrix Algebra 759
Find the Sum and Difference of Two Matrices • Find Scalar Multiples of a Matrix • Find the Product of Two Matrices • Find the Inverse of a Matrix
- Solve a System of Linear Equations Using an Inverse Matrix
11.5 Partial Fraction Decomposition 776
Decompose $\frac{P}{Q}$ Where Q Has Only Nonrepeated Linear Factors
- Decompose $\frac{P}{Q}$ Where Q Has Repeated Linear Factors • Decompose $\frac{P}{Q}$ Where Q Has a Nonrepeated Irreducible Quadratic Factor • Decompose $\frac{P}{Q}$
Where Q Has a Repeated Irreducible Quadratic Factor
11.6 Systems of Nonlinear Equations 785
Solve a System of Nonlinear Equations Using Substitution • Solve a System of Nonlinear Equations Using Elimination
11.7 Systems of Inequalities 794
Graph an Inequality • Graph a System of Inequalities
11.8 Linear Programming 801Set Up a Linear Programming Problem • Solve a Linear ProgrammingProblem
Chapter Review 809
Chapter Test 812
Cumulative Review 813
Chapter Projects 814
12 Sequences; Induction; the Binomial Theorem 815
12.1 Sequences 816List the First Several Terms of a Sequence • List the Terms of a SequenceDefined by a Recursive Formula • Use Summation Notation •Find theSum of a Sequence
12.2 Arithmetic Sequences 826
Determine Whether a Sequence Is Arithmetic • Find a Formula for an Arithmetic Sequence •Find the Sum of an Arithmetic Sequence
12.3 Geometric Sequences; Geometric Series 833
Determine Whether a Sequence Is Geometric • Find a Formula for a Geometric Sequence \bullet Find the Sum of a Geometric Sequence
- Determine Whether a Geometric Series Converges or Diverges
- Solve Annuity Problems
12.4 Mathematical Induction 845
Prove Statements Using Mathematical Induction
12.5 The Binomial Theorem 849
Evaluate $\left(\frac{n}{j}\right)$ • Use the Binomial Theorem
Chapter Review 855
Chapter Test 858
Cumulative Review 858
Chapter Projects 859
13 Counting and Probability 860
13.1 Counting 861
Find All the Subsets of a Set • Count the Number of Elements in a Set
- Solve Counting Problems Using the Multiplication Principle
13.2 Permutations and Combinations 866
Solve Counting Problems Using Permutations Involving n Distinct Objects
- Solve Counting Problems Using Combinations • Solve Counting Problems Using Permutations Involving n Nondistinct Objects
13.3 Probability 875
Construct Probability Models • Compute Probabilities of Equally Likely Outcomes • Find Probabilities of the Union of Two Events • Use the Complement Rule to Find Probabilities
Chapter Review 885
Chapter Test 887
Cumulative Review 888
Chapter Projects 888
14 A Preview of Calculus: The Limit, Derivative, and Integral of a Function 890
14.1 Investigating Limits Using Tables and Graphs 891
Investigate a Limit Using a Table • Investigate a Limit Using a Graph
14.2 Algebraic Techniques for Finding Limits 896
Find the Limit of a Sum, a Difference, and a Product • Find the Limit of a Polynomial • Find the Limit of a Power or a Root • Find the Limit of a Quotient • Find the Limit of an Average Rate of Change
14.3 One-sided Limits; Continuity 903
Find the One-sided Limits of a Function • Determine Whether a Function Is Continuous at a Number
14.4 The Tangent Problem; The Derivative 909
Find an Equation of the Tangent Line to the Graph of a Function
- Find the Derivative of a Function - Find Instantaneous Rates of Change
- Find the Instantaneous Velocity of an Object
14.5 The Area Problem; The Integral 917
Approximate the Area under the Graph of a Function • Approximate Integrals Using a Graphing Utility
Chapter Review 923
Chapter Test 926
Chapter Projects 927

A. 1 Algebra Essentials
 Work with Sets • Graph Inequalities • Find Distance on the Real Number
 Line • Evaluate Algebraic Expressions • Determine the Domain of a
 Variable • Use the Laws of Exponents • Evaluate Square Roots • Use a Calculator to Evaluate Exponents

A. 2 Geometry Essentials A14
Use the Pythagorean Theorem and Its Converse • Know Geometry Formulas

- Understand Congruent Triangles and Similar Triangles
A. 3 Polynomials A22
Recognize Monomials • Recognize Polynomials • Know Formulas for Special Products • Divide Polynomials Using Long Division • Factor Polynomials
- Complete the Square
A. 4 Synthetic Division A31
Divide Polynomials Using Synthetic Division
A. 5 Rational Expressions A35
Reduce a Rational Expression to Lowest Terms • Multiply and Divide Rational Expressions • Add and Subtract Rational Expressions • Use the Least Common Multiple Method • Simplify Complex Rational Expressions
A. 6 Solving Equations A44
Solve Equations by Factoring • Solve Equations Involving Absolute Value - Solve a Quadratic Equation by Factoring • Solve a Quadratic Equation by Completing the Square • Solve a Quadratic Equation Using the Quadratic Formula
A. 7 Complex Numbers; Quadratic Equations in the Complex Number System A54
Add, Subtract, Multiply, and Divide Complex Numbers • Solve Quadratic Equations in the Complex Number System
A. 8 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications A62
Translate Verbal Descriptions into Mathematical Expressions • Solve Interest Problems • Solve Mixture Problems • Solve Uniform Motion Problems
- Solve Constant Rate Job Problems
A. 9 Interval Notation; Solving Inequalities A72
Use Interval Notation • Use Properties of Inequalities • Solve Inequalities
- Solve Combined Inequalities • Solve Inequalities Involving Absolute Value
A. 10 nth Roots; Rational Exponents A83
Work with nth Roots • Simplify Radicals • Rationalize Denominators and Numerators • Solve Radical Equations • Simplify Expressions with Rational Exponents
Appendix B Graphing Utilities B1
B. 1 The Viewing Rectangle B1
B. 2 Using a Graphing Utility to Graph Equations B3
B. 3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry B5
B. 4 Using a Graphing Utility to Solve Equations B6
B. 5 Square Screens B8
B. 6 Using a Graphing Utility to Graph Inequalities B9
B. 7 Using a Graphing Utility to Solve Systems of Linear Equations B9
B. 8 Using a Graphing Utility to Graph a Polar Equation B11
B. 9 Using a Graphing Utility to Graph Parametric Equations B11
Answers AN1
Photo Credits C1
Subject Index I1

Three Distinct Series

Students have different goals, learning styles, and levels of preparation. Instructors have different teaching philosophies, styles, and techniques. Rather than write one series to fit all, the Sullivans have written three distinct series. All share the same goal-to develop a high level of mathematical understanding and an appreciation for the way mathematics can describe the world around us. The manner of reaching that goal, however, differs from series to series.

Flagship Series, Eleventh Edition

The Flagship Series is the most traditional in approach yet modern in its treatment of precalculus mathematics. In each text, needed review material is included, and is referenced when it is used. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra, Algebra \& Trigonometry, Trigonometry: A Unit Circle Approach, Precalculus.

Enhanced with Graphing Utilities Series, Seventh Edition

This series provides a thorough integration of graphing utilities into topics, allowing students to explore mathematical concepts and encounter ideas usually studied in later courses. Many examples show solutions using algebra side-by-side with graphing techniques. Using technology, the approach to solving certain problems differs from the Flagship Series, while the emphasis on understanding concepts and building strong skills is maintained: College Algebra, Algebra \& Trigonometry, Precalculus.

Concepts through Functions Series, Fourth Edition

This series differs from the others, utilizing a functions approach that serves as the organizing principle tying concepts together. Functions are introduced early in various formats. The approach supports the Rule of Four, which states that functions can be represented symbolically, numerically, graphically, and verbally. Each chapter introduces a new type of function and then develops all concepts pertaining to that particular function. The solutions of equations and inequalities, instead of being developed as stand-alone topics, are developed in the context of the underlying functions. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra; Precalculus, with a Unit Circle Approach to Trigonometry; Precalculus, with a Right Triangle Approach to Trigonometry.

The Flagship Series

College Algebra, Eleventh Edition

This text provides a contemporary approach to college algebra, with three chapters of review material preceding the chapters on functions. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for trigonometry, finite mathematics, and business calculus.

Algebra \& Trigonometry, Eleventh Edition

This text contains all the material in College Algebra, but also develops the trigonometric functions using a right triangle approach and shows how it relates to the unit circle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane, sequences, induction, and the binomial theorem are also presented. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Precalculus, Eleventh Edition

This text contains one review chapter before covering the traditional precalculus topics of polynomial, rational, exponential, and logarithmic functions and their graphs. The trigonometric functions are introduced using a unit circle approach and showing how it relates to the right triangle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane and in space, including the dot and cross products, sequences, induction, and the binomial theorem are also presented. Graphing calculator usage is provided, but is optional. The final chapter provides an introduction to calculus, with a discussion of the limit, the derivative, and the integral of a function. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Trigonometry: a Unit Circle Approach, Eleventh Edition

This text, designed for stand-alone courses in trigonometry, develops the trigonometric functions using a unit circle approach and shows how it relates to the right triangle approach. Vectors in the plane and in space, including the dot and cross products, are presented. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Preface to the Instructor

As a professor of mathematics at an urban public university for 35 years, I understand the varied needs of precalculus students. Students range from being underprepared with little mathematical background and a fear of mathematics, to being highly prepared and motivated. For some, this is their final course in mathematics. For others, it is preparation for future mathematics courses. I have written this text with both groups in mind.

A tremendous benefit of authoring a successful series is the broad-based feedback I receive from instructors and students who have used previous editions. I am sincerely grateful for their support. Virtually every change to this edition is the result of their thoughtful comments and suggestions. I hope that I have been able to take their ideas and, building upon a successful foundation of the tenth edition, make this series an even better learning and teaching tool for students and instructors.

Features in the Eleventh Edition

A descriptive list of the many special features of Precalculus can be found on the endpapers in the front of this text. This list places the features in their proper context, as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review it and to discuss it with your students at the beginning of your course. My experience has been that when students use these features, they are more successful in the course.

- Updated! Retain Your Knowledge Problems These problems, which were new to the previous edition, are based on the article "To Retain New Learning, Do the Math," published in the Edurati Review. In this article, Kevin Washburn suggests that "the more students are required to recall new content or skills, the better their memory will be." The Retain Your Knowledge problems were so well received that they have been expanded in this edition. Moreover, while the focus remains to help students maintain their skills, in most sections, problems were chosen that preview skills required to succeed in subsequent sections or in calculus. These are easily identified by the calculus icon (\varangle). All answers to Retain Your Knowledge problems are given in the back of the text and all are assignable in MyLab Math.
- Guided Lecture Notes Ideal for online, emporium/ redesign courses, inverted classrooms, or traditional lecture classrooms. These lecture notes help students take thorough, organized, and understandable notes as they watch the Author in Action videos. They ask students to complete definitions, procedures, and examples based on the content of the videos and text. In addition, experience suggests that students learn by doing and understanding the why/how of the concept or property. Therefore, many
sections will have an exploration activity to motivate student learning. These explorations introduce the topic and/or connect it to either a real-world application or a previous section. For example, when the vertical-line test is discussed in Section 2.2, after the theorem statement, the notes ask the students to explain why the vertical-line test works by using the definition of a function. This challenge helps students process the information at a higher level of understanding.
- Illustrations Many of the figures have captions to help connect the illustrations to the explanations in the body of the text.
- Graphing Utility Screen Captures In several instances we have added Desmos screen captures along with the TI-84 Plus C screen captures. These updated screen captures provide alternate ways of visualizing concepts and making connections between equations, data and graphs in full color.
- Chapter Projects, which apply the concepts of each chapter to a real-world situation, have been enhanced to give students an up-to-the-minute experience. Many of these projects are new requiring the student to research information online in order to solve problems.
- Exercise Sets The exercises in the text have been reviewed and analyzed, some have been removed, and new ones have been added. All time-sensitive problems have been updated to the most recent information available. The problem sets remain classified according to purpose.

The 'Are You Prepared?' problems have been improved to better serve their purpose as a just-in-time review of concepts that the student will need to apply in the upcoming section.

The Concepts and Vocabulary problems have been expanded to cover each objective of the section. These multiple-choice, fill-in-the-blank, and True/False exercises have been written to also serve as reading quizzes.

Skill Building problems develop the student's computational skills with a large selection of exercises that are directly related to the objectives of the section. Mixed Practice problems offer a comprehensive assessment of skills that relate to more than one objective. Often these require skills learned earlier in the course.

Applications and Extensions problems have been updated. Further, many new application-type exercises have been added, especially ones involving information and data drawn from sources the student will recognize, to improve relevance and timeliness.

At the end of Applications and Extensions, we have a collection of one or more Challenge Problems. These problems, as the title suggests, are intended to be thought-provoking, requiring some ingenuity to solve. They can be used for group work or to challenge students. At the end of the Annotated Instructor's

Edition and in the online Instructor's Solutions Manual, we have provided solutions to all these problems.

The Explaining Concepts: Discussion and Writing exercises provide opportunity for classroom discussion and group projects.

Updated! Retain Your Knowledge has been improved and expanded. The problems are based on material learned earlier in the course, especially calculus-related material. They serve to keep information that has already been learned "fresh" in the mind of the student. Answers to all these problems appear in the Student Edition.

NEW Need to Review? These margin notes provide a just-in-time reminder of a concept needed now, but covered in an earlier section of the book. Each note includes a reference to the chapter, section and page where the concept was originally discussed.

Content Changes to the $11^{\text {th }}$ edition

- Challenge Problems have been added in most sections at the end of the Application and Extensions exercises. Challenge Problems are intended to be thought-provoking problems that require some ingenuity to solve. They can be used to challenge students or for group work. Solutions to Challenge Problems are available in the Annotated Instructor's Edition and the online Instructors Solutions Manual.
- Need to Review? These margin notes provide a just-in-time review for a concept needed now, but covered in an earlier section of the book. Each note is back-referenced to the chapter, section and page where the concept was originally discussed.
- Additional Retain Your Knowledge exercises, whose purpose is to keep learned material fresh in a student's mind, have been added to each section. Many of these new problems preview skills required for calculus or for concepts needed in subsequent sections.
- Desmos screen captures have been added throughout the text. This is done to recognize that graphing technology expands beyond graphing calculators.
- Examples and exercises throughout the text have been augmented to reflect a broader selection of STEM applications.
- Concepts and Vocabulary exercises have been expanded to cover each objective of a section.
- Skill building exercises have been expanded to assess a wider range of difficulty.
- Applied problems and those based on real data have been updated where appropriate.

Appendix A

- Section A. 10 Objective 3 now includes rationalizing the numerator
- NEW Example 6 Rationalizing Numerators
- Problems 69-76 provide practice.
- Section A. 10 Exercises now include more practice in simplifying radicals

Chapter 1

- NEW Section 1.2 Example 9 Testing an Equation for Symmetry
- Section 1.3 has been reorganized to treat the slope-intercept form of the equation of a line before finding an equation of a line using two points.

Chapter 2

- NEW Section 2.1 Objective 1 Describe a Relation
- NEW Section 2.2 Example 4 Expending Energy
- NEW Section 2.4 Example 4 Analyzing a Piecewise-defined Function
- NEW Example 1 Describing a Relation demonstrates using the Rule of Four to express a relation numerically, as a mapping, and graphically given a verbal description.

Chapter 3

- Section 3.3 introduces the concept of concavity for a quadratic function
- NEW Section 3.3 Example 3 Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts
- Section 3.3 Example 8 Analyzing the Motion of a Projectile (formerly in Section 3.4)
- NEW Section 3.4 Example 4 Fitting a Quadratic Function to Data

Chapter 4

- Section 4.1 has been revised and split into two sections:
- 4.1 Polynomial Functions
- 4.2 Graphing Polynomial Functions; Models
- NEW Section 4.2 Example 2 Graphing a Polynomial Function (a 4th degree polynomial function)

Chapter 5

- Section 5.2 now finds and verifies inverse functions analytically and graphically.

Chapter 6

- NEW Section 6.1 Example 6 Field Width of a Digital Lens Reflex Camera Lens
- Section 6.4 and 6.5 were reorganized for increased clarity.

Chapter 7

- Sections 7.1 and 7.2 were reorganized for increased clarity.

Chapter 9

- Section 9.3 The complex plane; DeMoivre's Theorem, was rewritten to support the exponential form of a complex number.
- Euler's Formula is introduced to express a complex number in exponential form.
- The exponential form of a complex number is used to compute products and quotients.
- DeMoivre's Theorem is expressed using the exponential form of a complex number.
- The exponential form is used to find complex roots.

Chapter 11

- NEW Section 11.5 Example 1 Identifying Proper and Improper Rational Expressions

Using the Eleventh Edition Effectively with Your Syllabus

To meet the varied needs of diverse syllabi, this text contains more content than is likely to be covered in a Precalculus course. As the chart illustrates, this text has been organized with flexibility of use in mind. Within a given chapter, certain sections are optional (see the details that follow the figure below) and can be omitted without loss of continuity.

Appendix A Review

This chapter consists of review material. It may be used as the first part of the course or later as a just-in-time review when the content is required. Specific references to this chapter occur throughout the text to assist in the review process.

Chapter 1 Graphs
This chapter lays the foundation for functions.
Chapter 2 Functions and Their Graphs
Perhaps the most important chapter. Section 2.6 is optional.

Chapter 3 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 3.2 and 3.4 may be omitted without loss of continuity.

Acknowledgments

Textbooks are written by authors, but evolve from an idea to final form through the efforts of many people. It was Don Dellen who first suggested this text and series to me. Don is remembered for his extensive contributions to publishing and mathematics.

Thanks are due to the following people for their assistance and encouragement to the preparation of this edition:

- From Pearson Education: Anne Kelly for her substantial contributions, ideas, and enthusiasm; Dawn Murrin, for her unmatched talent at getting the details right; Joseph Colella for always getting the reviews and pages to me on time; Peggy McMahon for directing the always difficult production process; Rose Kernan for handling

Chapter 4 Polynomial and Rational Functions
Topic selection depends on your syllabus.

Chapter 5 Exponential and Logarithmic Functions

Sections 5.1-5.6 follow in sequence. Sections 5.7, 5.8, and 5.9 are optional.

Chapter 6 Trigonometric Functions

Section 6.6 may be omitted in a brief course.

Chapter 7 Analytic Trigonometry

Sections 7.7 may be omitted in a brief course.
Chapter 8 Applications of Trigonometric Functions Sections 8.4 and 8.5 may be omitted in a brief course.

Chapter 9 Polar Coordinates; Vectors
Sections 9.1-9.3 and Sections 9.4-9.7 are independent and may be covered separately.

Chapter 10 Analytic Geometry

Sections 10.1-10.4 follow in sequence. Sections 10.5, 10.6, and 10.7 are independent of each other, but each requires Sections 10.1-10.4.

Chapter 11 Systems of Equations and Inequalities

Sections 11.2-11.7 may be covered in any order, but each requires Section 11.1. Section 11.8 requires Section 11.7.

Chapter 12 Sequences; Induction; The Binomial Theorem

There are three independent parts: Sections 12.1-12.3; Section 12.4; and Section 12.5.

Chapter 13 Counting and Probability The sections follow in sequence.

Chapter 14 A Preview of Calculus: The Limit, Derivative, and Integral of a Function
If time permits, coverage of this chapter will give your students a beneficial head start in calculus.
liaison between the compositor and author; Peggy Lucas and Stacey Sveum for their genuine interest in marketing this text. Marcia Horton for her continued support and genuine interest; Paul Corey for his leadership and commitment to excellence; and the Pearson Sales team, for their continued confidence and personal support of Sullivan texts.

- Accuracy checkers: C. Brad Davis who read the entire manuscript and accuracy checked answers. His attention to detail is amazing; Timothy Britt, for creating the Solutions Manuals; and Kathleen Miranda and Pamela Trim for accuracy checking answers.
Finally, I offer my grateful thanks to the dedicated users and reviewers of my texts, whose collective insights form the backbone of each textbook revision.

James Africh, College of DuPage
Steve Agronsky, Cal Poly State University
Gererdo Aladro, Florida International University
Grant Alexander, Joliet Junior College
Dave Anderson, South Suburban College
Wes Anderson, Northwest Vista College
Richard Andrews, Florida A\&M University
Joby Milo Anthony, University of Central Florida
James E. Arnold, University of Wisconsin-Milwaukee
Adel Arshaghi, Center for Educational Merit
Carolyn Autray, University of West Georgia
Agnes Azzolino, Middlesex County College
Wilson P. Banks, Illinois State University
Sudeshna Basu, Howard University
Timothy Bayer, Virginia Western CC
Dale R. Bedgood, East Texas State University
Beth Beno, South Suburban College
Carolyn Bernath, Tallahassee Community College
Rebecca Berthiaume, Edison State College
William H. Beyer, University of Akron
Annette Blackwelder, Florida State University
Richelle Blair, Lakeland Community College
Kevin Bodden, Lewis and Clark College
Jeffrey Boerner, University of Wisconsin-Stout
Connie Booker, Owensboro Community and Technical College
Barry Booten, Florida Atlantic University
Laurie Boudreaux, Nicholls State University
Larry Bouldin, Roane State Community College
Bob Bradshaw, Ohlone College
Trudy Bratten, Grossmont College
Tim Bremer, Broome Community College
Tim Britt, Jackson State Community College
Holly Broesamle, Oakland CC-Auburn Hills
Michael Brook, University of Delaware
Timothy Brown, Central Washington University
Joanne Brunner, Joliet Junior College
Warren Burch, Brevard Community College
Mary Butler, Lincoln Public Schools
Melanie Butler, West Virginia University
Jim Butterbach, Joliet Junior College
Roberto Cabezas, Miami Dade College
William J. Cable, University of Wisconsin-Stevens Point
Lois Calamia, Brookdale Community College
Jim Campbell, Lincoln Public Schools
Roger Carlsen, Moraine Valley Community College
Elena Catoiu, Joliet Junior College
Mathews Chakkanakuzhi, Palomar College
Tim Chappell, Penn Valley Community College
John Collado, South Suburban College
Amy Collins, Northwest Vista College
Alicia Collins, Mesa Community College
Nelson Collins, Joliet Junior College
Rebecca Connell, Troy University
Jim Cooper, Joliet Junior College
Denise Corbett, East Carolina University
Carlos C. Corona, San Antonio College
Theodore C. Coskey, South Seattle Community College
Rebecca Connell, Troy University
Donna Costello, Plano Senior High School
Rebecca Courter, Pasadena City College
Garrett Cox, The University of Texas at San Antonio
Paul Crittenden, University of Nebraska at Lincoln
John Davenport, East Texas State University Faye Dang, Joliet Junior College
Antonio David, Del Mar College

Stephanie Deacon, Liberty University
Duane E. Deal, Ball State University
Jerry DeGroot, Purdue North Central
Timothy Deis, University of WisconsinPlatteville
Joanna DelMonaco, Middlesex Community College
Vivian Dennis, Eastfield College
Deborah Dillon, R. L. Turner High School
Guesna Dohrman, Tallahassee Community College
Cheryl Doolittle, Iowa State University
Karen R. Dougan, University of Florida
Jerrett Dumouchel, Florida Community College at Jacksonville
Louise Dyson, Clark College
Paul D. East, Lexington Community College
Don Edmondson, University of Texas-Austin
Erica Egizio, Joliet Junior College
Jason Eltrevoog, Joliet Junior College
Christopher Ennis, University of Minnesota
Kathy Eppler, Salt Lake Community College
Ralph Esparza, Jr., Richland College
Garret J. Etgen, University of Houston
Scott Fallstrom, Shoreline Community College
Pete Falzone, Pensacola Junior College
Arash Farahmand, Skyline College
Said Fariabli, San Antonio College
W.A. Ferguson, University of Illinois-Urbana/ Champaign
Iris B. Fetta, Clemson University
Mason Flake, student at Edison Community College
Timothy W. Flood, Pittsburg State University
Robert Frank, Westmoreland County
Community College
Merle Friel, Humboldt State University
Richard A. Fritz, Moraine Valley
Community College
Dewey Furness, Ricks College
Mary Jule Gabiou, North Idaho College
Randy Gallaher, Lewis and Clark College
Tina Garn, University of Arizona
Dawit Getachew, Chicago State University
Wayne Gibson, Rancho Santiago College
Loran W. Gierhart, University of Texas at San Antonio and Palo Alto College
Robert Gill, University of Minnesota Duluth
Nina Girard, University of Pittsburgh at Johnstown
Sudhir Kumar Goel, Valdosta State University
Adrienne Goldstein, Miami Dade College, Kendall Campus
Joan Goliday, Sante Fe Community College
Lourdes Gonzalez, Miami Dade College, Kendall Campus
Frederic Gooding, Goucher College
Donald Goral, Northern Virginia Community College
Sue Graupner, Lincoln Public Schools
Mary Beth Grayson, Liberty University
Jennifer L. Grimsley, University of Charleston
Ken Gurganus, University of North Carolina
Igor Halfin, University of Texas-San Antonio
James E. Hall, University of WisconsinMadison
Judy Hall, West Virginia University
Edward R. Hancock, DeVry Institute of Technology
Julia Hassett, DeVry Institute, Dupage
Christopher Hay-Jahans, University of South Dakota
Michah Heibel, Lincoln Public Schools
LaRae Helliwell, San Jose City College
Celeste Hernandez, Richland College
Gloria P. Hernandez, Louisiana State University at Eunice
Brother Herron, Brother Rice High School

Robert Hoburg, Western Connecticut State University
Lynda Hollingsworth, Northwest Missouri State University
Deltrye Holt, Augusta State University
Charla Holzbog, Denison High School
Lee Hruby, Naperville North High School
Miles Hubbard, St. Cloud State University
Kim Hughes, California State College-San Bernardino
Stanislav, Jabuka, University of Nevada, Reno
Ron Jamison, Brigham Young University
Richard A. Jensen, Manatee Community College
Glenn Johnson, Middlesex Community College
Sandra G. Johnson, St. Cloud State University
Tuesday Johnson, New Mexico State University
Susitha Karunaratne, Purdue University North Central
Moana H. Karsteter, Tallahassee Community College
Donna Katula, Joliet Junior College
Arthur Kaufman, College of Staten Island
Thomas Kearns, North Kentucky University
Jack Keating, Massasoit Community College
Shelia Kellenbarger, Lincoln Public Schools
Rachael Kenney, North Carolina State University
Penelope Kirby, Florida State University
John B. Klassen, North Idaho College
Debra Kopcso, Louisiana State University
Lynne Kowski, Raritan Valley Community College
Yelena Kravchuk, University of Alabama at Birmingham
Ray S. Kuan, Skyline College
Keith Kuchar, Manatee Community College
Tor Kwembe, Chicago State University
Linda J. Kyle, Tarrant Country Jr. College
H.E. Lacey, Texas A \& M University

Darren Lacoste, Valencia College-West Campus
Harriet Lamm, Coastal Bend College
James Lapp, Fort Lewis College
Matt Larson, Lincoln Public Schools
Christopher Lattin, Oakton Community College
Julia Ledet, Lousiana State University
Wayne Lee, St. Phillips CC
Adele LeGere, Oakton Community College
Kevin Leith, University of Houston
JoAnn Lewin, Edison College
Jeff Lewis, Johnson County Community College
Janice C. Lyon, Tallahassee Community College
Jean McArthur, Joliet Junior College
Virginia McCarthy, Iowa State University
Karla McCavit, Albion College
Michael McClendon, University of Central Oklahoma
Tom McCollow, DeVry Institute of Technology
Marilyn McCollum, North Carolina State University
Jill McGowan, Howard University
Will McGowant, Howard University
Angela McNulty, Joliet Junior College
Lisa Meads, College of the Albemarle
Laurence Maher, North Texas State University
Jay A. Malmstrom, Oklahoma City Community College
Rebecca Mann, Apollo High School
Lynn Marecek, Santa Ana College
Sherry Martina, Naperville North High School
Ruby Martinez, San Antonio College
Alec Matheson, Lamar University
Nancy Matthews, University of Oklahoma

James Maxwell, Oklahoma State University-Stillwater
Marsha May, Midwestern State University
James McLaughlin, West Chester University
Judy Meckley, Joliet Junior College
David Meel, Bowling Green State University
Carolyn Meitler, Concordia University
Samia Metwali, Erie Community College
Rich Meyers, Joliet Junior College
Eldon Miller, University of Mississippi
James Miller, West Virginia University
Michael Miller, Iowa State University
Kathleen Miranda, SUNY at Old Westbury
Chris Mirbaha, The Community College of Baltimore County
Val Mohanakumar, Hillsborough Community College
Thomas Monaghan, Naperville North High School
Miguel Montanez, Miami Dade College, Wolfson Campus
Maria Montoya, Our Lady of the Lake University
Susan Moosai, Florida Atlantic University
Craig Morse, Naperville North High School
Samad Mortabit, Metropolitan State University
Pat Mower, Washburn University
Tammy Muhs, University of Central Florida
A. Muhundan, Manatee Community College

Jane Murphy, Middlesex Community College
Richard Nadel, Florida International University
Gabriel Nagy, Kansas State University
Bill Naegele, South Suburban College
Karla Neal, Lousiana State University
Lawrence E. Newman, Holyoke Community College
Dwight Newsome, Pasco-Hernando Community College
Denise Nunley, Maricopa Community Colleges
James Nymann, University of Texas-El Paso
Mark Omodt, Anoka-Ramsey Community College
Seth F. Oppenheimer, Mississippi State University
Leticia Oropesa, University of Miami
Linda Padilla, Joliet Junior College
Sanja Pantic, University of Illinois at Chicago
E. James Peake, Iowa State University

Kelly Pearson, Murray State University
Dashamir Petrela, Florida Atlantic University
Philip Pina, Florida Atlantic University
Charlotte Pisors, Baylor University
Michael Prophet, University of Northern Iowa
Laura Pyzdrowski, West Virginia University
Carrie Quesnell, Weber State University
Neal C. Raber, University of Akron
Thomas Radin, San Joaquin Delta College

Aibeng Serene Radulovic, Florida Atlantic University
Ken A. Rager, Metropolitan State College Traci Reed, St. Johns River State College
Kenneth D. Reeves, San Antonio College
Elsi Reinhardt, Truckee Meadows Community College
Jose Remesar, Miami Dade College, Wolfson Campus
Jane Ringwald, Iowa State University
Douglas F. Robertson, University of Minnesota, MPLS
Stephen Rodi, Austin Community College
William Rogge, Lincoln Northeast High School
Howard L. Rolf, Baylor University
Mike Rosenthal, Florida International University
Phoebe Rouse, Lousiana State University
Edward Rozema, University of Tennessee at Chattanooga
Dennis C. Runde, Manatee Community College
Paul Runnion, Missouri University of Science and Technology
Amit Saini, University of Nevada-Reno
Laura Salazar, Northwest Vista College
Alan Saleski, Loyola University of Chicago
Susan Sandmeyer, Jamestown Community College
Brenda Santistevan, Salt Lake Community College
Linda Schmidt, Greenville Technical College
Ingrid Scott, Montgomery College
A.K. Shamma, University of West Florida

Zachery Sharon, University of Texas at San Antonio
Joshua Shelor, Virginia Western CC
Martin Sherry, Lower Columbia College
Carmen Shershin, Florida International University
Tatrana Shubin, San Jose State University
Anita Sikes, Delgado Community College
Timothy Sipka, Alma College
Charlotte Smedberg, University of Tampa
Lori Smellegar, Manatee Community College
Gayle Smith, Loyola Blakefield
Cindy Soderstrom, Salt Lake Community College
Leslie Soltis, Mercyhurst College
John Spellman, Southwest Texas State University
Karen Spike, University of North Carolina
Rajalakshmi Sriram, Okaloosa-Walton Community College
Katrina Staley, North Carolina Agricultural and Technical State University
Becky Stamper, Western Kentucky University
Judy Staver, Florida Community College-South

Robin Steinberg, Pima Community College Neil Stephens, Hinsdale South High School
Sonya Stephens, Florida A\&M Univeristy
Patrick Stevens, Joliet Junior College
John Sumner, University of Tampa
Matthew TenHuisen, University of North Carolina, Wilmington
Christopher Terry, Augusta State University
Diane Tesar, South Suburban College
Tommy Thompson, Brookhaven College
Martha K. Tietze, Shawnee Mission Northwest High School
Richard J. Tondra, Iowa State University
Florentina Tone, University of West Florida
Suzanne Topp, Salt Lake Community College
Marilyn Toscano, University of Wisconsin, Superior
Marvel Townsend, University of Florida
Jim Trudnowski, Carroll College
David Tseng, Miami Dade College, Kendall Campus
Robert Tuskey, Joliet Junior College
Mihaela Vajiac, Chapman University-Orange
Julia Varbalow, Thomas Nelson Community College-Leesville
Richard G. Vinson, University of South Alabama
Jorge Viola-Prioli, Florida Atlantic University
Mary Voxman, University of Idaho
Jennifer Walsh, Daytona Beach Community College
Donna Wandke, Naperville North High School
Timothy L. Warkentin, Cloud County Community College
Melissa J. Watts, Virginia State University
Hayat Weiss, Middlesex Community College
Kathryn Wetzel, Amarillo College
Darlene Whitkenack, Northern Illinois University
Suzanne Williams, Central Piedmont Community College
Larissa Williamson, University of Florida
Christine Wilson, West Virginia University
Brad Wind, Florida International University
Anna Wiodarczyk, Florida International University
Mary Wolyniak, Broome Community College
Canton Woods, Auburn University
Tamara S. Worner, Wayne State College
Terri Wright, New Hampshire Community Technical College, Manchester
Rob Wylie, Carl Albert State College
Aletheia Zambesi, University of West Florida
George Zazi, Chicago State University
Loris Zucca, Lone Star College-Kingwood
Steve Zuro, Joliet Junior College

Get the Most Out of MyLab Math π Int|

Math courses are continuously evolving to help today's students succeed. It's more challenging than ever to support students with a wide range of backgrounds, learner styles, and math anxieties. The flexibility to build a course that fits instructors' individual course formats-with a variety of content options and multimedia resources all in one place-has made MyLab Math the market-leading solution for teaching and learning mathematics since its inception.

Preparedness

One of the biggest challenges in College Algebra, Trigonometry, and Precalculus is making sure students are adequately prepared with prerequisite knowledge. For a student, having the essential algebra skills upfront in this course can dramatically increase success.

- MyLab Math with Integrated Review can be used in corequisite courses, or simply to help students who enter without a full understanding of prerequisite skills and concepts. Integrated Review provides videos on review topics with a corresponding worksheet, along with premade, assignable skills-check quizzes and personalized review homework assignments. Integrated Review is now available within all Sullivan 11th Edition MyLab Math courses.

Resources for Success

MyLab ${ }^{\text {TM }}$ Math is tightly integrated with each author's style, offering a range of author-created multimedia resources, so your students have a consistent experience.

Video Program and Resources

Author in Action Videos are actual classroom lectures by Michael Sullivan III with fully worked-out examples.

- Video assessment questions are available to assign in MyLab Math for key videos.
- Updated! The corresponding Guided Lecture Notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos.

Retain Your Knowledge Exercises

 Updated! Retain Your KnowledgeExercises, assignable in MyLab Math, improve students' recall of concepts learned earlier in the course. New for the 11th Edition, additional exercises will be included that will have an emphasis on content that students will build upon in the immediate upcoming section.

EXAMPLE

Finding the Exact Value of a Logarithmic Expression

Guided Visualizations

New! Guided Visualizations, created in GeoGebra by Michael Sullivan III, bring mathematical concepts to life, helping students visualize the concept through directed exploration and purposeful manipulation. Assignable in MyLab Math with assessment questions to check students' conceptual understanding.

Resources for Success

Instructor Resources

Online resources can be downloaded from www.pearson.com, or hardcopy resources can be ordered from your sales representative.

Annotated Instructor's Edition

Precalculus, $11^{\text {th }}$ Edition
ISBN - 0135189535 / 9780135189535
Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.

Instructor's Solutions Manual

ISBN - 0135189578 / 9780135189573
Includes fully worked solutions to all exercises in the text.

Learning Catalytics Question Library

Questions written by Michael Sullivan III are available within MyLab Math to deliver through Learning Catalytics to engage students in your course.

Powerpoint ${ }^{\circledR}$ Lecture Slides

Fully editable slides correlate to the textbook.

Mini Lecture Notes

Includes additional examples and helpful teaching tips, by section.

Testgen ${ }^{\circledR}$

TestGen (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text.

Online Chapter Projects

Additional projects that give students an opportunity to apply what they learned in the chapter.

Student Resources

Additional resources to enhance student success.

Lecture Video

Author in Action videos are actual classroom lectures with fully worked out examples presented by Michael Sullivan, III. All video is assignable within MyLab Math.

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all chapter test exercises from the text. These are available in MyLab Math and on YouTube.

Student's Solutions Manual

ISBN - 013518973X / 9780135189733
Provides detailed worked-out solutions to oddnumbered exercises.

Guided Lecture Notes

ISBN - 0135189551 / 9780135189559
These lecture notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos. Students actively participate in learning the how/why of important concepts through explorations and activities. The Guided Lecture Notes are available as PDF's and customizable Word files in MyLab Math. They can also be packaged with the text and the MyLab Math access code.

Algebra Review

ISBN: 0131480065 / 9780131480063
Four printed chapters of Intermediate Algebra review available. Perfect for a corequisite course or for individual review.

Applications Index

absolute maximum/minimum in, 77
area under a curve, 111, 462, 686, 700, 776
average rate of change in, $80,197,317,428$, $463,468,479,487,545,631,663,713$, 734, 826
carrying a ladder around a corner, 428, 477
composite functions in, 263
concavity test, 155,808
critical numbers, 826
difference quotient in, 54, 61, 111, 168, $190,295,317,334,375,406,498,673$, 713, 793
discontinuous functions, 223
e^{x} in, 287, 825
factoring in, 309, 462, 734, 808
functions approximated by polynomial functions in, 197
increasing/decreasing functions in, 75, 155, 190, 700, 801
Intermediate Value Theorem, 240, 801
maxima/minima in, $77,135,345,406$
maximizing projectile range, 504,509
maximizing rain gutter construction, 509
partial fraction decomposition, 832, 849, 866, 875
perpendicular lines, 759,784
radians in, 364
rationalizing numerators, 759
secant line in, $80,135,334,479$
second derivative, 866
simplifying in, 535
Simpson's rule, 164
Snell's Law of Refraction, 478
tangent line, 558, 559, 568, 600
trigonometric expressions and functions, $466,476,486,500,502-503,507,510$, 513, 515, 663, 686, 849

Acoustics

amplifying sound, 356
loudness of sound, 307,358
loudspeaker, 567
sonic boom, 685
tuning fork, 567, 568
whispering galleries, 669-670

Aerodynamics

modeling aircraft motion, 651

Aeronautics

fighter jet design, 557

Agriculture

farm management, 807
farm workers in U.S., 344
field enclosure, 792
grazing area for cow, 558
milk production, 351
minimizing cost, 807
removing stump, 622-623

Air travel

bearing of aircraft, 532
distance between two planes, 113
frequent flyer miles, 543
holding pattern, 420, 477
parking at O'Hare International
Airport, 95
revising a flight plan, 550
sonic boom, 685
speed and direction of aircraft, 617, 621

Archaeology

age of ancient tools, 337-338
age of fossil, 343
age of tree, 343
date of prehistoric man's death, 357

Architecture

brick staircase, 832, 857
Burj Khalifa building, A15
Flatiron Building, 557
floor design, 830, 857
football stadium seating, 831
mosaic design, 832, 857
Norman window, 162, A20
parabolic arch, 162
racetrack design, 672
special window, 162,170
stadium construction, 832
vertically circular building, 41
window design, 162

Area. See also Geometry

of Bermuda Triangle, 557
under a curve, 462
of isosceles triangle, 509
of portion of rectangle outside of circle, 374
of sector of circle, 369,372
of segment of circle, 570
for tethered dog to roam, 374
of windshield wiper sweep, 372

Art

fine decorative pieces, 390

Astronomy

angle of elevation of Sun, 531
distances in, 532, 825
Halley's comet, 700
International Space Station (ISS), 713
parallax, 532
planetary orbits
Earth, 672
elliptical, 672
Jupiter, 672
Mars, 672
Mercury, 700
Pluto, 672
radius of Moon, 391

Aviation

modeling aircraft motion, 651
orbital launches, 731
speed of plane, A72

Biology

alcohol and driving, 303, 308
bacterial growth, 336-337,350
E-coli, 84, 126
blood types, 865
bone length, 170-171
cricket chirp rate and temperature, 163
healing of wounds, 293, 307
lung volume, 406
maternal age versus Down syndrome, 141
muscle force, 622
yeast biomass as function of time, 349

Business

advertising, 34, 142, 171
automobile production, 265, 747
blending coffee, A70
checkout lines, 884
clothing store, 887
commissions, 170
cookie orders, 812
cost
of can, 219, 222
of commodity, 265
of manufacturing, 230, 800, A13, A69
marginal, 155, 170
minimizing, 170, 807, 812
of printing, 194-195
of production, $84,265,774,812$
of transporting goods, 96
cost equation, 33
cost function, 134
customer wait times, 221
demand equation, 170, 256
depreciation, 258, 308
discount pricing, 266
drive-thru rate
at Burger King, 289
at Citibank, 293, 307
at McDonald's, 293-294
equipment depreciation, 842
expense computation, A71
farm workers in U.S., 344
inventory management, 116

Jiffy Lube's car arrival rate, 293, 307
managing a meat market, 807
milk production, 351
mixing candy, A70
mixing nuts, A70
orange juice production, 747
precision ball bearings, A13
presale orders, 732
product design, 808
production scheduling, 807
product promotion, 34
profit, 774
maximizing, 805-806, 807-808
profit function, 62
rate of return on, 332
restaurant management, 732
revenue, 155, 168, 171, 350, A69
advertising, 352
airline, 808
of clothing store, 764
daily, 155
from digital music, 110
from football seating, 843
instantaneous rate of change of, 917,925
maximizing, 155, 161-162
monthly, 155
theater, 733
RV rental, 171
salary, 266, 832
gross, 61
increases in, 842, 857
sales
commission on, A82
of movie theater ticket, $720,725,731$
net, 9
profit from, A72
salvage value, 357
straight-line depreciation, 129-130, 133
supply and demand, 130-131, 133
tax, 230
toy truck manufacturing, 800
transporting goods, 801
truck rentals, 33
unemployment, 887
wages
of car salesperson, 33

Carpentry. See also Construction

pitch, 35

Chemistry

alpha particles, 685
decomposition reactions, 344
drug concentration, 221
pH, 306
purity of gold, A71
radioactive decay, 343, 350-351, 357,
358, 808
radioactivity from Chernobyl, 344
salt solutions, A71
self-catalytic chemical reaction, 155
sugar molecules, A71
volume of gas, A82

Combinatorics

airport codes, 867
binary codes, 887
birthday permutations, $869,874,881$, 885, 887
blouses and skirts combinations, 865
book arrangements, 874
box stacking, 873
code formation, 873
combination locks, 874
committee formation, $871,873,874,887$
Senate committees, 874
flag arrangement, 872,887
gender composition of children in family, 878
letter codes, 867-868
license plate possibilities, 874,887
lining up people, 868,873
number formation, $865,873,874,887$
objects selection, 874
passwords, 874
seating arrangements, 887
shirts and ties combinations, 865
telephone numbers, 887
two-symbol codewords, 864
word formation, $872,874,887$

Communications

data plan, 46, 71, 122-123
installing cable TV, 115
phone charges, 133
radar detection, 585
satellite dish, 659-660, 662
social networking, 345, 351
spreading of rumors, 293, 307
tablet service, 95
texting speed, 222
Touch-Tone phones, 514

Computers and computing

graphics, 623, 775
households owning computers, 344
laser printers, A70
three-click rule, 775
website design, 775
website map, 775
Word users, 344

Construction

of box, 792, A68-A69, A72
closed, 120
open, 116
of brick staircase, 857
of can, 255
of coffee can, A71
of cylindrical tube, 792
of enclosures
around garden, A70
around pond, A70
maximizing area of, 158-159, 162, 170
of fencing, 158-159, 162, 170, 792
minimum cost for, 221
of flashlight, 662
of headlight, 662
of highway, 532, 544, 570
installing cable TV, 115
painting a room, 429
pitch of roof, 533
of rain gutter, 162, 383, 509, 523-524
of ramp, 543
access ramp, 34
of rectangular field enclosure, 162
sidewalk, 392
of stadium, 162, 832
of steel drum, 222
of swimming pool, A21
of swing set, 552
of tent, 557
TV dish, 662
vent pipe installation, 672
of walkway, 447

Cryptography

matrices in, 775

Decorating

Christmas tree, A16

Demographics

birth rate
age of mother and, 164
of unmarried women, 155
diversity index, 306
life expectancy, A81
marital status, 866
mosquito colony growth, 343
population. See Population
rabbit colony growth, 824

Design

of awning, 544
of box with minimum surface area, 222
of fine decorative pieces, 390
of Little League Field, 374
of water sprinkler, 372

Direction

of aircraft, 617, 621
compass heading, 621
for crossing a river, 621
of fireworks display, 684
of lightning strikes, 684
of motorboat, 621
of swimmer, 650

Distance

astronomical, 532
average rate of change of moving particle, 926
Bermuda Triangle, A21
bicycle riding, 72
from Chicago to Honolulu, 462
circumference of Earth, 373
between Earth and Mercury, 544
between Earth and Venus, 545
from Earth to a star, 531-532
of explosion, 685
height
of aircraft, 543, 544
of bouncing ball, 842,857
of bridge, 543
of building, 531, 532
of cloud, 527
of Eiffel Tower, 531
of embankment, 532
of Ferris Wheel rider, 477
of Great Pyramid of Cheops,
544, A21
of helicopter, 570
of hot-air balloon, 532
of Lincoln's caricature on Mt.
Rushmore, 533
of mountain, 539-540, 543
of statue on a building, 527-528
of tower, 533
of tree, 391, 543
of Washington Monument, 532
of Willis Tower, 532
from home, 72
from Honolulu to Melbourne,
Australia, 462
of hot-air balloon
to airport, 572
from intersection, 8
from intersection, 8,115
kayaking, 487
length
of guy wire, 551
of mountain trail, 532
of ski lift, 542
limiting magnitude of telescope, 356
to the Moon, 543
nautical miles, 373
pendulum swings, 838,842
to plateau, 531
across a pond, 531
pool depth, 97
range of airplane, A71
reach of ladder, 531
of rotating beacon, 429
between runners, 543
at sea, 544,571
to shore, 531, 544, 570
between skyscrapers, 533,534
stopping, 62, 155, 277
to tower, 544
traveled by wheel, A20
between two moving vehicles, 8
toward intersection, 115
between two objects, $8,531,532$
between two planes, 113
viewing, 391
visibility of Gibb's Hill Lighthouse beam, 528-529, A22
visual, A21
walking, 72
width
of gorge, 530
of Mississippi River, 533
of river, 526, 570

Economics

Consumer Price Index (CPI), 334
demand equations, 256
inflation, 333
IS-LM model in, 732
marginal propensity to consume, 843
multiplier, 843
national debt, 84
participation rate, 62
per capita federal debt, 333
poverty rates, 196
poverty threshold, 9
relative income of child, 775
unemployment, 887

Education

age distribution of community college, 888
college costs, 333, 842
college tuition and fees, 357,774
degrees awarded, 863
doctorates, 884
faculty composition, 885
funding a college education, 357
grade computation, A82
IQ tests, A82
learning curve, 294, 307
maximum level achieved, 814
multiple-choice test, 874
spring break, 807
student loan
interest on, 774
true/false test, 873
video games and grade-point average, 141

Electricity

alternating current (ac), 446, 498
alternating current (ac) circuits, 419, 438
alternating current (ac) generators, 420
charging a capacitor, 567
cost of, 93
current in $R C$ circuit, 294
current in $R L$ circuit, 294, 307
impedance, A62
Kirchhoff's Rules, 733, 747
parallel circuits, A62
resistance in, 207
rates for, $34, \mathrm{~A} 82$
resistance, 207, A43
voltage
foreign, A13
U.S., A13

Electronics. See also Computers
 and computing

Blu-ray drive, 372
clock signal, 568
loudspeakers, 567
microphones, 19
sawtooth curve, 509, 567

Energy

expended while walking, 66-67
nuclear power plant, 684
solar, 19, 630
solar heat, 662
thermostat control, 110

Engineering

bridges
Golden Gate, 159-160
parabolic arch, 170, 661-662
semielliptical arch, 671-672,716
suspension, 162, 661
drive wheel, 534
Gateway Arch (St. Louis), 662
grade
of mountain trail, 793
of road, 35
lean of Leaning Tower of Pisa, 543
moment of inertia, 514
piston engines, 390
product of inertia, 509
road system, 584
robotic arm, 640
rods and pistons, 552
searchlight, 486, 662, 716
tunnel clearance, 420
whispering galleries, 671

Entertainment

Demon Roller Coaster customer rate, 294
movie theater, 461-462
theater revenues, 733

Environment

endangered species, 293
invasive species, 345
lake pollution control laws, 824
oil leakage, 265

Exercise

elliptical trainer, 672
heartbeats during, 127-128
for weight loss, A82
Finance. See also Investment(s)
balancing a checking account, A13
bank balance comparison, 333
bills in wallet, 887
clothes shopping, 813
college costs, 333, 842
computer system purchase, 332
consumer expenditures annually by age, 160-161
cost
of car, 33
of car rental, 96
of electricity, 93
of fast food, 732
minimizing, 170, 221
of natural gas, 34, 96
of printing, 194-195
of towing car, 132
of transatlantic travel, 62,70
of triangular lot, 557
cost function, 134
cost minimization, 155
credit cards
balance on, 784
debt, 824
interest on, 332
payment, 97,824
depreciation, 293
of car, 308, 324, 360
discounts, 266
division of money, A64, A69
effective rate of interest, 329
electricity rates, 34
financial planning, 732, 743-744, 747, A64, A69
foreign exchange, 266
funding a college education, 357
future value of money, 196
gross salary, 61
life cycle hypothesis, 163
loans, A69
car, 824
interest on, 774, A64
repayment of, 332
student, 774
mortgages, 333
fees, 96
interest rates on, 333
second, 333
price appreciation of homes, 332
prices of fast food, 733
refunds, 732
revenue maximization, $155,157-158$, 161-162
rich man's promise, 843
salary options, 844
saving
for a car, 332
for a home, 842
savings accounts interest, 332
selling price of a home, 44-45
sinking fund, 842
taxes, 133
competitive balance, 133
federal income, $96,266,278$, A82
gas guzzler, 663
truck rentals, 85
used-car purchase, 332
water bills, A82

Food and nutrition

animal, 808
candy, 140
color mix of candy, 887
cooler contents, 888
cooling time of pizza, 343
fast food, 732, 733
fat content, A82
Girl Scout cookies, 884
hospital diet, 733, 746
ice cream, 807
number of possible meals, 863-864
soda and hot dogs buying
combinations, 134
sodium content, A82
warming time of beer stein, 344

Forensic science

gender of remains, 551
tibia length and height relationship, 309

Forestry

wood product classification, 342

Games

coin toss, 877
die rolling, 877, 878-879, 888
grains of wheat on a chess board, 843
lottery, 888-889
Gardens and gardening. See Landscaping

Geography

area of Bermuda Triangle, 557
area of lake, 557,571
inclination of mountain trail, 526, 570

Geology

earthquakes, 308
geysers, 832

Geometry

angle between two lines, 499
balloon volume, 265
box volume, 631
circle
area of, 557, A69
center of, 41
circumference of, A12, A69
equation of, 758
inscribed in square, 114
length of chord of, 552
radius of, 791
collinear points, 758
cone volume, 266
cube
length of edge of, 244
surface area of, A13
volume of, A13
cylinder
inscribing in cone, 115
inscribing in sphere, 115
volume of, 266
Descartes's method of equal roots, 792
dodecagon, 499, 557
equation of line, 758
ladder angle, 572
octagon, 508
Pascal figures, 855
polygon
area of, 758
quadrilateral area, 557, 572
rectangle
area of, 61, 112-113, 120, A12
dimensions of, 791
inscribed in circle, 114
inscribed in ellipse, 672
inscribed in semicircle, 114, 510
perimeter of, A12
semicircle inscribed in, 115
semicircle area, 557, 572
sphere, 640
surface area of, A13
volume of, A13
square
area of, A20, A69
diagonals of, 8,9
perimeter of, A69
shading, 843
surface area
of balloon, 265
of cube, A13
of sphere, A13
tetrahedron, volume of, 758
triangle
area of, 556-557, 558, 572, 758, A12
circumscribing, 545
equilateral, $8,9, \mathrm{~A} 12-\mathrm{A} 13$
inscribed in circle, 115
isosceles, 61, 572, 791
Koch's snowflake, 843
medians of, 8
Pascal's, 824
perfect, 558
perimeter of, A13
right, 530
sides of, 572,573
volume of parallelepiped, 646
wire into geometric shapes, 114-115

Government

federal debt, 84
per capita, 333
federal income tax, 62, 96, 266, 278, A82
first-class mail, 97
Health. See also Exercise; Medicine
age versus total cholesterol, 352
blood pressure, 420, 477
expenditures on, 62
ideal body weight, 277
life cycle hypothesis, 163
Home improvement. See also Construction
painting a house, 733

Housing

apartment rental, 163
price appreciation of homes, 332

Investment(s)

401(k), 842, 857
annuity, 839-840, 842
in bonds, 808
Treasuries, 747, 798, 800, 802
zero-coupon, 330, 333
in CDs, 329, 808
compound interest on, 325-326, 327,328, 329, 332-333, 358
diversified, 733
dividing, 98, A69
doubling of, 330, 333
effective rate of interest, 329
finance charges, 332
in fixed-income securities, 333, 808
growth rate for, 332-333
IRA, 333, 839-840, 842
mutual fund growth over time, 346-347
return on, 332, 807, 808
savings account, 325-326
in stock
analyzing, 173
appreciation, 332
beta, 124,173
NASDAQ stocks, 873
NYSE stocks, 873
portfolios of, 866
price of, 843
time to reach goal, 332, 334
tripling of, 331, 333

Landscaping

boulder movement, 623
garden enclosure, A70
height of tree, 543
pond enclosure, 170
rectangular pond border, 170
removing stump, 622-623
tree planting, 747
watering lawn, 372

Law and law enforcement

motor vehicle thefts, 884
violent crimes, 62

Leisure and recreation

amusement park ride, 372
cable TV, 115
community skating rink, 121
Ferris wheel, 41, 372, 420, 477, 567
roller coaster, 440
video games and grade-point average, 141

Measurement

optical methods of, 486
of rainfall, 630
Medicine. See also Health
age versus total cholesterol, 352
blood pressure, 477
cancer
breast, 350
pancreatic, 293
drug concentration, 84, 221
drug medication, 293, 307
healing of wounds, 293, 307
lithotripsy, 672
spreading of disease, 357-358

Meteorology

weather balloon height and atmospheric pressure, 348

Miscellaneous

banquet seating, 807
bending wire, 792
biorhythms, 421
board deflection, 700
carrying a ladder around a corner, 428, 477
citrus ladders, 832
coffee container, 360
cross-sectional area of beam, 62, 70
curve fitting, 732, 746, 811
drafting error, 8
Droste Effect, 825
lamp shadow, 685
land dimensions, 543
Mandelbrot sets, 608
paper creases, 848
pet ownership, 884
surface area of balloon, 265
surveillance satellites, 534
volume of balloon, 265
wire enclosure area, 114-115
working together on a job, A67-A68, A70

Mixtures. See also Chemistry
blending coffees, 800, 812, A65, A69, A70
blending teas, A70
candy, A70
cement, A71
mixed nuts, 731, 801, 812, A70
solutions, 732
water and antifreeze, A71
Motion. See also Physics
catching a train, 716
on a circle, 372
of Ferris Wheel rider, 477
of golf ball, 70
minute hand of clock, 372,445
objects approaching intersection, 712
of pendulum, 568
revolutions of circular disk, A20
simulating, 706-707
tortoise and the hare race, 791
uniform, 712, A66, A70

Motor vehicles

alcohol and driving, 303, 308
angular speed of race car, 445
approaching intersection, 712
automobile production, 265, 747
average car speed, A72
brake repair with tune-up, 887
braking load, 630, 650
crankshafts, 544
depreciation, 258
depreciation of, 308, 324, 360
with Global Positioning System (GPS), 357
loans for, 824
runaway car, 168
spin balancing tires, 373
stopping distance, 62, 155, 277
theft of, 884
towing cost for car, 132
used-car purchase, 332
windshield wiper, 372

Music

revenues from, 110

Navigation

avoiding a tropical storm, 550
bearing, 529, 550
of aircraft, 532
of ship, 532, 571
charting a course, 621
commercial, 543
compass heading, 621
crossing a river, 621
error in
correcting, 548-549, 571
time lost due to, 543
rescue at sea, 540-541,543
revising a flight plan, 550

Oceanography

tides, 420, 439

Optics

angle of refraction, 478
bending light, 478
Brewster angle, 478
index of refraction, 478
laser beam, 531
laser projection, 509
lensmaker's equation, A43
light obliterated through glass, 293
mirrors, 685, 825
reflecting telescope, 662

Pediatrics

height vs. head circumference, 277

Pharmacy

vitamin intake, 732, 747

Photography

camera distance, 532
camera lens field width, 368,372
field width, 391

Physics

angle of elevation of Sun, 531
angle of inclination, 630
bouncing balls, 857
braking load, 630
damped motion, 571
Doppler effect, 222
effect of elevation on weight, 70
escape velocity, 700
force, 621, A69
frictional, 571
to hold a wagon on a hill, 627-628
muscle, 622
resultant, 621
gravity, 207, 230
on Earth, 61, 278
on Jupiter, 62
harmonic motion, 561
damped, 571
simple, 571
heat transfer, 477
Hooke's Law, 134
inclination of mountain trail, 526
inclined ramp, 622
kinetic energy, A69
missile trajectory, 173
moment of inertia, 514
motion of object, 561-562
pendulum motion, $372,568,838$
period, 110, 278
pressure, A69
product of inertia, 509
projectile distance, 391
projectile motion, 111, 151, 154-155,
389-390, 391, 477, 504, 509, 514, 616, 705-706, 711-713, 716
artillery, 168, 468
hit object, 712
thrown object, 711
simulating motion, 706-707
static equilibrium, 618-619, 622, 623, 650
static friction, 622
tension, 618-619, 622, 650, 849
thrown object, 616
ball, 163, 168, 913-915, 916
truck pulls, 622
uniform motion, 115, 712, 716, A66, A70
velocity down inclined planes, A91
vertically propelled object, 168
weight
of a boat, 621
of a car, 621
of a piano, 618
work, 640, A69

Play

swinging, 572
wagon pulling, 621, 628-629

Plumbing

water leak, 700

Population. See also Demographics

bacteria, 295, 343, 350
decline in, 343
E-coli growth, 84, 126
of endangered species, 344-345
of fruit fly, 341
as function of age, 62
growth in, 343, 345
insect, 207, 343, 345
predator-prey, 405
of trout, 824
of United States, 323, 351, 859
of world, 323, 351-352, 357, 815, 927

Probability

of ball not being chosen, 221
of birthday shared by people in a room, 344
checkout lines, 884
classroom composition, 884
exponential, 289, 293, 307
of finding ideal mate, 308
household annual income, 884
Poisson, 293-294
"Price is Right" games, 884
standard normal density function, 111
of winning a lottery, 885

Pyrotechnics

fireworks display, 684
Rate. See also Speed
of car, 372
catching a bus, 711
catching a train, 711
current of stream, 732
of emptying
oil tankers, A71
a pool, A71
a tub, A71
of filling
a conical tank, 116
to keep up with the Sun, 373
revolutions per minute
of bicycle wheels, 372,374
of pulleys, 373
of two cyclists, A71
of water use, 111

Real estate

commission schedule, A82
cost of triangular lot, 557
housing prices, 255
mortgage loans, 333

Recreation

bungee jumping, 230
Demon Roller Coaster customer rate, 294
gambling, 884

Security

security cameras, 531

Seismology

calibrating instruments, 716
Sequences. See also Combinatorics
ceramic tile floor design, 830
Drury Lane Theater, 831
football stadium seating, 831
seats in amphitheater, 831

Speed

of aircraft, 621, A72
angular, 372, 445
average, A72
of current, 373, 812, A70
as function of time, 72,115
of glider, 570
instantaneous, 925
linear, 370
on Earth, 372, 373
of Moon, 373
of motorboat, A70
of moving walkways, A70
revolutions per minute of pulley, 373
of rotation of lighthouse beacons, 445
of swimmer, 650
of truck, 531
of wheel pulling cable cars, 373
wind, 732
of wind turbine, 372

Sports

baseball, 711-712, 874, 887
diamond, 8
dimensions of home plate, 557
field, 551, 552
Little League, 8, 374
on-base percentage, 135-136
World Series, 874
basketball, 874
free throws, 69-70, 533
granny shots, 69
biathlon, A71
bungee jumping, 230
cycling, A71
distance between runners, 543
exacta betting, 887
football, 672, A71
defensive squad, 874
seating revenue, 843
golf, 70, 352, 705-706, 712
distance to the green, 550
sand bunkers, 468
hammer throw, 447
Olympic heroes, A71
pool shots, 534
races, 789, 791, A71
relay runners, 887
soccer, 551
swimming, 572, 650
tennis, 197, 222, A70

Surveys

of appliance purchases, 865
data analysis, 862,865
stock portfolios, 866
of summer session attendance, 865
of TV sets in a house, 884

Temperature

of air parcel, 832
body, A13
conversion of, 134, 266, 278
cooling time of pizza, 343
cricket chirp rate and, 163
measuring, 34
after midnight, 196
monthly, 420, 438-439, 446
relationship between scales, 110
shelf life and, 85
sinusoidal function from, 434-435
of skillet, 357
warming time of beer stein, 344
wind chill factor, 357

Tests and testing

IQ, A82

Time

for beer stein to warm, 344
for block to slide down inclined plane, 390
Ferris Wheel rider height as function of, 477
to go from an island to a town, 116
hours of daylight, $257,361,420,436-437$, 440, 448, 461
for pizza to cool, 343
of sunrise, 373, 461
of trip, 390, 405

Transportation

deicing salt, 468
Niagara Falls Incline Railway, 532

Travel. See also Air travel; Navigation

bearing, 571
drivers stopped by the police, 359
parking at O'Hare International
Airport, 95
sailing, 599
tailgating, 390

Velocity

instantaneous of ball, 916 on the Moon, 916-917

Volume

of gasoline in tank, A91
of ice in skating rink, 121
of water in cone, 116

Weapons

artillery, 168, 468
cannons, 173

Weather

atmospheric pressure, 293, 307
avoiding a tropical storm, 550
cooling air, 832
hurricanes, 141, 196, 438
lightning strikes, 681-682, 684
probability of rain, 880
rainfall measurement, 630
relative humidity, 294
tornadoes, 140
wind chill, 97,357
Work, 628-629
computing, 628-629, 630, 650
constant rate jobs, 812
pulling a wagon, 628-629
ramp angle, 630
wheelbarrow push, 621

Graphs

How to Value a House

Two things to consider in valuing a home: (1) How does it compare to similar nearby homes that have sold recently? (2) What value do you place on the advertised features and amenities?

The Zestimate ${ }^{\circledR}$ home value is a good starting point in figuring out the value of a home. It shows you how the home compares relative to others in the area, but you then need to add in all the other qualities that only someone who has seen the house knows.

Looking at "comps"

Knowing whether an asking price is fair will be important when you're ready to make an offer on a house. It will be even more important
 the house is worth the loan you're after.

Check on Zillow to see recent sales of similar, or comparable, homes in the area. Print them out and keep these "comps." You'll be referring to them quite a bit.

Note that "recent sales" usually means within the past six months. A sales price from a year ago probably bears little or no relation to what is going on in your area right now. In fact, some lenders will not accept comps older than three months.

Market activity also determines how easy or difficult it is to find accurate comps. In a "hot" or busy market, you're likely to have lots of comps to choose from. In a less active market finding reasonable comps becomes harder. And if the home you're looking at has special design features, finding a comparable property is harder still. It's also necessary to know what's going on in a given sub-segment. Maybe large, high-end homes are selling like hotcakes, but owners of smaller houses are staying put, or vice versa.
Source: http://luthersanchez.com/2016/03/09/how-to-value-a-house/
(ค) - See the Internet-based Chapter Project-

© A Look Back

Appendix A reviews skills from intermediate algebra.

A Look Ahead $\boldsymbol{\Theta}$

Here we connect algebra and geometry using the rectangular coordinate system. In the 1600s, algebra had developed to the point that René Descartes (1596-1650) and Pierre de Fermat (1601-1665) were able to use rectangular coordinates to translate geometry problems into algebra problems, and vice versa. This enabled both geometers and algebraists to gain new insights into their subjects, which had been thought to be separate but now were seen as connected.

Outline

1.1 The Distance and Midpoint Formulas
1.2 Graphs of Equations in Two Variables; Intercepts; Symmetry
1.3 Lines
1.4 Circles
Chapter Review
Chapter Test
Chapter Project

1.1 The Distance and Midpoint Formulas

PREPARING FOR THIS SECTION Before getting started, review the following:

- Algebra Essentials (Section A.1, pp. A1-A10)
- Geometry Essentials (Section A.2, pp. A14-A19)

Now Work the 'Are You Prepared?' problems on page 6.
OBJECTIVES 1 Use the Distance Formula (p. 3)
2 Use the Midpoint Formula (p. 5)

Figure 1 xy-Plane

Figure 2

$\begin{aligned} & \text { Quadrant II } \\ & x<0, y>0 \end{aligned}$	$\begin{aligned} & \text { Quadrant I } \\ & x>0, y>0 \end{aligned}$
Quadrant III $x<0, y<0$	Quadrant IV $x>0, y<0$

Figure 3

Rectangular Coordinates

We locate a point on the real number line by assigning it a single real number, called the coordinate of the point. For work in a two-dimensional plane, we locate points by using two numbers.

Begin with two real number lines located in the same plane: one horizontal and the other vertical. The horizontal line is called the \boldsymbol{x}-axis, the vertical line the \boldsymbol{y}-axis, and the point of intersection the origin \boldsymbol{O}. See Figure 1. Assign coordinates to every point on these number lines using a convenient scale. In mathematics, we usually use the same scale on each axis, but in applications, different scales appropriate to the application may be used.

The origin O has a value of 0 on both the x-axis and the y-axis. Points on the x-axis to the right of O are associated with positive real numbers, and those to the left of O are associated with negative real numbers. Points on the y-axis above O are associated with positive real numbers, and those below O are associated with negative real numbers. In Figure 1, the x-axis and y-axis are labeled as x and y, respectively, and an arrow at the end of each axis is used to denote the positive direction.

The coordinate system described here is called a rectangular or Cartesian* coordinate system. The x-axis and y-axis lie in a plane called the $\boldsymbol{x} \boldsymbol{y}$-plane, and the x-axis and y-axis are referred to as the coordinate axes.

Any point P in the $x y$-plane can be located by using an ordered pair (x, y) of real numbers. Let x denote the signed distance of P from the y-axis (signed means that if P is to the right of the y-axis, then $x>0$, and if P is to the left of the y-axis, then $x<0$); and let y denote the signed distance of P from the x-axis. The ordered pair (x, y), also called the coordinates of P, gives us enough information to locate the point P in the plane.

For example, to locate the point whose coordinates are $(-3,1)$, go 3 units along the x-axis to the left of O and then go straight up 1 unit. We plot this point by placing a dot at this location. See Figure 2, in which the points with coordinates $(-3,1),(-2,-3),(3,-2)$, and $(3,2)$ are plotted.

The origin has coordinates $(0,0)$. Any point on the x-axis has coordinates of the form $(x, 0)$, and any point on the y-axis has coordinates of the form $(0, y)$.

If (x, y) are the coordinates of a point P, then x is called the \boldsymbol{x}-coordinate, or abscissa, of P, and y is the \boldsymbol{y}-coordinate, or ordinate, of P. We identify the point P by its coordinates (x, y) by writing $P=(x, y)$. Usually, we will simply say "the point (x, y) " rather than "the point whose coordinates are (x, y)."

The coordinate axes partition the $x y$-plane into four sections called quadrants, as shown in Figure 3. In quadrant I, both the x-coordinate and the y-coordinate of all points are positive; in quadrant II, x is negative and y is positive; in quadrant III, both x and y are negative; and in quadrant IV, x is positive and y is negative. Points on the coordinate axes belong to no quadrant.

[^0][^1]COMMENT On a graphing calculator, you can set the scale on each axis. Once this has been done, you obtain the viewing rectangle. See Figure 4 for a typical viewing rectangle. You should now read Section B.1, The Viewing Rectangle.

Figure 4 TI-84 Plus C Standard Viewing Rectangle

1 Use the Distance Formula

If the same units of measurement (such as inches, centimeters, and so on) are used for both the x-axis and y-axis, then all distances in the $x y$-plane can be measured using this unit of measurement.

EXAMPLE 1 Finding the Distance between Two Points

Find the distance d between the points $(1,3)$ and $(5,6)$.
Solution First plot the points $(1,3)$ and $(5,6)$ and connect them with a line segment. See Figure 5(a). To find the length d, begin by drawing a horizontal line segment from $(1,3)$ to $(5,3)$ and a vertical line segment from $(5,3)$ to $(5,6)$, forming a right triangle, as shown in Figure 5(b). One leg of the triangle is of length 4 (since $|5-1|=4$), and the other is of length 3 (since $|6-3|=3$). By the Pythagorean Theorem, the square of the distance d that we seek is

$$
\begin{aligned}
d^{2}=4^{2}+3^{2}=16+9 & =25 \\
d=\sqrt{25} & =5
\end{aligned}
$$

Figure 5
The distance formula provides a straightforward method for computing the distance between two points.

$\Gamma_{\text {THEOREM Distance Formula }}$

The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, denoted by $d\left(P_{1}, P_{2}\right)$, is

$$
\begin{equation*}
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{1}
\end{equation*}
$$

Proof of the Distance Formula Let $\left(x_{1}, y_{1}\right)$ denote the coordinates of point P_{1} and let $\left(x_{2}, y_{2}\right)$ denote the coordinates of point P_{2}.

- Assume that the line joining P_{1} and P_{2} is neither horizontal nor vertical. Refer to Figure 6(a) on the next page. The coordinates of P_{3} are $\left(x_{2}, y_{1}\right)$. The horizontal
distance from P_{1} to P_{3} equals the absolute value of the difference of the x-coordinates, $\left|x_{2}-x_{1}\right|$. The vertical distance from P_{3} to P_{2} equals the absolute value of the difference of the y-coordinates, $\left|y_{2}-y_{1}\right|$. See Figure 6(b). The distance $d\left(P_{1}, P_{2}\right)$ is the length of the hypotenuse of the right triangle, so, by the Pythagorean Theorem, it follows that

$$
\begin{aligned}
{\left[d\left(P_{1}, P_{2}\right)\right]^{2} } & =\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2} \\
& =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
d\left(P_{1}, P_{2}\right) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

(a)

(b)

Figure 6

- If the line joining P_{1} and P_{2} is horizontal, then the y-coordinate of P_{1} equals the y-coordinate of P_{2}; that is, $y_{1}=y_{2}$. Refer to Figure 7(a). In this case, the distance formula (1) still works, because for $y_{1}=y_{2}$, it reduces to

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+0^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}}=\left|x_{2}-x_{1}\right|
$$

Figure 7

- A similar argument holds if the line joining P_{1} and P_{2} is vertical. See Figure 7(b).

EXAMPLE 2 Using the Distance Formula

Find the distance d between the points $(-4,5)$ and $(3,2)$.
Solution
Using the distance formula, equation (1), reveals that the distance d is

$$
\begin{aligned}
d=\sqrt{[3-(-4)]^{2}+(2-5)^{2}} & =\sqrt{7^{2}+(-3)^{2}} \\
& =\sqrt{49+9}=\sqrt{58} \approx 7.62
\end{aligned}
$$

Now Work problems 19 and 23
The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ is never a negative number. Also, the distance between two points is 0 only when the points are identical-that is, when $x_{1}=x_{2}$ and $y_{1}=y_{2}$. And, because $\left(x_{2}-x_{1}\right)^{2}=\left(x_{1}-x_{2}\right)^{2}$ and $\left(y_{2}-y_{1}\right)^{2}=\left(y_{1}-y_{2}\right)^{2}$, it makes no difference whether the distance is computed from P_{1} to P_{2} or from P_{2} to P_{1}; that is, $d\left(P_{1}, P_{2}\right)=d\left(P_{2}, P_{1}\right)$.

The introduction to this chapter mentioned that rectangular coordinates enable us to translate geometry problems into algebra problems, and vice versa. The next example shows how algebra (the distance formula) can be used to solve geometry problems.

EXAMPLE 3 Using Algebra to Solve a Geometry Problem

Consider the three points $A=(-2,1), B=(2,3)$, and $C=(3,1)$.
(a) Plot each point and form the triangle $A B C$.
(b) Find the length of each side of the triangle.
(c) Show that the triangle is a right triangle.
(d) Find the area of the triangle.

Solution

Figure 8

Figure 9
(a) Figure 8 shows the points A, B, C and the triangle $A B C$.
(b) To find the length of each side of the triangle, use the distance formula, equation (1).

$$
\begin{aligned}
& d(A, B)=\sqrt{[2-(-2)]^{2}+(3-1)^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5} \\
& d(B, C)=\sqrt{(3-2)^{2}+(1-3)^{2}}=\sqrt{1+4}=\sqrt{5} \\
& d(A, C)=\sqrt{[3-(-2)]^{2}+(1-1)^{2}}=\sqrt{25+0}=5
\end{aligned}
$$

(c) If the sum of the squares of the lengths of two of the sides equals the square of the length of the third side, then the triangle is a right triangle. Looking at Figure 8, it seems reasonable to conjecture that the angle at vertex B might be a right angle. We shall check to see whether

$$
[d(A, B)]^{2}+[d(B, C)]^{2}=[d(A, C)]^{2}
$$

Using the results in part (b) yields

$$
\begin{aligned}
{[d(A, B)]^{2}+[d(B, C)]^{2} } & =(2 \sqrt{5})^{2}+(\sqrt{5})^{2} \\
& =20+5=25=[d(A, C)]^{2}
\end{aligned}
$$

It follows from the converse of the Pythagorean Theorem that triangle $A B C$ is a right triangle.
(d) Because the right angle is at vertex B, the sides $A B$ and $B C$ form the base and height of the triangle. Its area is

$$
\text { Area }=\frac{1}{2} \cdot \text { Base } \cdot \text { Height }=\frac{1}{2} \cdot 2 \sqrt{5} \cdot \sqrt{5}=5 \text { square units }
$$

an Now Work Problem 33

2 Use the Midpoint Formula

We now derive a formula for the coordinates of the midpoint of a line segment. Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be the endpoints of a line segment, and let $M=(x, y)$ be the point on the line segment that is the same distance from P_{1} as it is from P_{2}. See Figure 9. The triangles $P_{1} A M$ and $M B P_{2}$ are congruent. [Do you see why? $d\left(P_{1}, M\right)=d\left(M, P_{2}\right)$ is given; also, $\angle A P_{1} M=\angle B M P_{2}{ }^{*}$ and $\angle P_{1} M A=\angle M P_{2} B$. So, we have angle-side-angle.] Because triangles $P_{1} A M$ and $M B P_{2}$ are congruent, corresponding sides are equal in length. That is,

$$
\begin{aligned}
& x-x_{1}=x_{2}-x \quad \text { and } \quad y-y_{1}=y_{2}-y \\
& 2 x=x_{1}+x_{2} \quad 2 y=y_{1}+y_{2} \\
& x=\frac{x_{1}+x_{2}}{2} \quad y=\frac{y_{1}+y_{2}}{2}
\end{aligned}
$$

*A postulate from geometry states that the transversal $\overline{P_{1} P_{2}}$ forms congruent corresponding angles with the parallel line segments $\overline{P_{1} A}$ and $\overline{M B}$.

In Words

To find the midpoint of a line segment, average the x-coordinates of the endpoints, and average the y-coordinates of the endpoints.

THEOREM Midpoint formula

The midpoint $M=(x, y)$ of the line segment from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$ is

$$
\begin{equation*}
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \tag{2}
\end{equation*}
$$

EXAMPLE 4 Finding the Midpoint of a Line Segment

Figure 10

Find the midpoint of the line segment from $P_{1}=(-5,5)$ to $P_{2}=(3,1)$. Plot the points P_{1} and P_{2} and their midpoint.
Use the midpoint formula (2) with $x_{1}=-5, y_{1}=5, x_{2}=3$, and $y_{2}=1$. The coordinates (x, y) of the midpoint M are

$$
x=\frac{x_{1}+x_{2}}{2}=\frac{-5+3}{2}=-1 \quad \text { and } \quad y=\frac{y_{1}+y_{2}}{2}=\frac{5+1}{2}=3
$$

That is, $M=(-1,3)$. See Figure 10.
am Now Work Problem 39

1.1 Assess Your Understanding

'Are You Prepared?' Answers are given at the end of these exercises. If you get a wrong answer, read the pages listed in red.

1. On the real number line, the origin is assigned the number \qquad (p. A4)
2. If -3 and 5 are the coordinates of two points on the real number line, the distance between these points is \qquad . (pp. A5-A6)
3. If 3 and 4 are the legs of a right triangle, the hypotenuse is \qquad ($\mathrm{p} . \mathrm{A} 14$)
4. Use the converse of the Pythagorean Theorem to show that a triangle whose sides are of lengths 11,60 , and 61 is a right triangle. (pp. A14-A15)
5. The area A of a triangle whose base is b and whose altitude is h is $A=$ \qquad . (p. A15)
6. True or False Two triangles are congruent if two angles and the included side of one equals two angles and the included side of the other. (pp. A16-A17)

Concepts and Vocabulary

7. If (x, y) are the coordinates of a point P in the $x y$-plane, then x is called the \qquad of P, and y is the \qquad of P.
8. The coordinate axes partition the $x y$-plane into four sections called \qquad -.
9. If three distinct points P, Q, and R all lie on a line, and if $d(P, Q)=d(Q, R)$, then Q is called the \qquad of the line segment from P to R.
10. True or False The distance between two points is sometimes a negative number.
11. True or False The point $(-1,4)$ lies in quadrant IV of the Cartesian plane.
12. True or False The midpoint of a line segment is found by averaging the x-coordinates and averaging the y-coordinates of the endpoints.
13. Multiple Choice Which of the following statements is true for a point (x, y) that lies in quadrant III?
(a) Both x and y are positive.
(b) Both x and y are negative.
(c) x is positive, and y is negative.
(d) x is negative, and y is positive.
14. Multiple Choice Choose the expression that equals the distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
(a) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(b) $\sqrt{\left(x_{2}+x_{1}\right)^{2}-\left(y_{2}+y_{1}\right)^{2}}$
(c) $\sqrt{\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}}$
(d) $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$

In Problems 15 and 16, plot each point in the xy-plane. State which quadrant or on what coordinate axis each point lies.
15. (a) $A=(-3,2)$
(d) $D=(6,5)$
16. (a) $A=(1,4)$
(d) $D=(4,1)$
(b) $B=(6,0)$
(e) $E=(0,-3)$
(c) $C=(-2,-2)$
(f) $F=(6,-3)$
(b) $B=(-3,-4)$
(e) $E=(0,1)$
(c) $C=(-3,4)$
(f) $F=(-3,0)$
17. Plot the points $(2,0),(2,-3),(2,4),(2,1)$, and $(2,-1)$. Describe the set of all points of the form $(2, y)$, where y is a real number.
18. Plot the points $(0,3),(1,3),(-2,3),(5,3)$, and $(-4,3)$. Describe the set of all points of the form $(x, 3)$, where x is a real number.

In Problems 19-32, find the distance d between the points P_{1} and P_{2}.
19.

20.

21.

22.

23. $P_{1}=(3,-4) ; \quad P_{2}=(5,4)$
24. $P_{1}=(-1,0) ; \quad P_{2}=(2,4)$
25. $P_{1}=(-7,3) ; \quad P_{2}=(4,0)$
26. $P_{1}=(2,-3) ; \quad P_{2}=(4,2)$
27. $P_{1}=(5,-2) ; \quad P_{2}=(6,1)$
28. $P_{1}=(-4,-3) ; \quad P_{2}=(6,2)$
29. $P_{1}=(-0.2,0.3) ; \quad P_{2}=(2.3,1.1)$
30. $P_{1}=(1.2,2.3) ; \quad P_{2}=(-0.3,1.1)$
31. $P_{1}=(a, b) ; \quad P_{2}=(0,0)$
32. $P_{1}=(a, a) ; \quad P_{2}=(0,0)$

In Problems 33-38, plot each point and form the triangle ABC. Show that the triangle is a right triangle. Find its area.
33. $A=(-2,5) ; \quad B=(1,3) ; \quad C=(-1,0)$
34. $A=(-2,5) ; \quad B=(12,3) ; \quad C=(10,-11)$
35. $A=(-5,3) ; \quad B=(6,0) ; \quad C=(5,5)$
36. $A=(-6,3) ; \quad B=(3,-5) ; \quad C=(-1,5)$
37. $A=(4,-3) ; \quad B=(0,-3) ; \quad C=(4,2)$
38. $A=(4,-3) ; \quad B=(4,1) ; \quad C=(2,1)$

In Problems 39-46, find the midpoint of the line segment joining the points P_{1} and P_{2}.
39. $P_{1}=(3,-4) ; \quad P_{2}=(5,4)$
40. $P_{1}=(-2,0) ; \quad P_{2}=(2,4)$
41. $P_{1}=(-1,4) ; \quad P_{2}=(8,0)$
42. $P_{1}=(2,-3) ; \quad P_{2}=(4,2)$
43. $P_{1}=(7,-5) ; \quad P_{2}=(9,1)$
44. $P_{1}=(-4,-3) ; \quad P_{2}=(2,2)$
45. $P_{1}=(a, b) ; \quad P_{2}=(0,0)$
46. $P_{1}=(a, a) ; \quad P_{2}=(0,0)$

Applications and Extensions

47. If the point $(2,5)$ is shifted 3 units to the right and 2 units down, what are its new coordinates?
48. If the point $(-1,6)$ is shifted 2 units to the left and 4 units up, what are its new coordinates?
49. Find all points having an x-coordinate of 3 whose distance from the point $(-2,-1)$ is 13 .
(a) By using the Pythagorean Theorem.
(b) By using the distance formula.
50. Find all points having a y-coordinate of -6 whose distance from the point $(1,2)$ is 17 .
(a) By using the Pythagorean Theorem.
(b) By using the distance formula.
51. Find all points on the x-axis that are 6 units from the point $(4,-3)$.
52. Find all points on the y-axis that are 6 units from the point $(4,-3)$.
53. Suppose that $A=(2,5)$ are the coordinates of a point in the $x y$-plane.
(a) Find the coordinates of the point if A is shifted 3 units to the left and 4 units down.
(b) Find the coordinates of the point if A is shifted 2 units to the left and 8 units up.
54. Plot the points $A=(-1,8)$ and $M=(2,3)$ in the $x y$-plane. If M is the midpoint of a line segment $A B$, find the coordinates of B.
55. The midpoint of the line segment from P_{1} to P_{2} is $(-1,4)$. If $P_{1}=(-3,6)$, what is P_{2} ?
56. The midpoint of the line segment from P_{1} to P_{2} is $(5,-4)$. If $P_{2}=(7,-2)$, what is P_{1} ?
57. Geometry The medians of a triangle are the line segments from each vertex to the midpoint of the opposite side (see the figure). Find the lengths of the medians of the triangle with vertices at $A=(0,0), B=(6,0)$, and $C=(4,4)$.

58. Geometry An equilateral triangle has three sides of equal length. If two vertices of an equilateral triangle are $(0,4)$ and $(0,0)$ find the third vertex. How many of these triangles are possible?

In Problems 59-62, find the length of each side of the triangle determined by the three points P_{1}, P_{2}, and P_{3}. State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both. (An isosceles triangle is one in which at least two of the sides are of equal length.)
59. $P_{1}=(2,1) ; \quad P_{2}=(-4,1) ; \quad P_{3}=(-4,-3)$
60. $P_{1}=(-1,4) ; \quad P_{2}=(6,2) ; \quad P_{3}=(4,-5)$
61. $P_{1}=(-2,-1) ; \quad P_{2}=(0,7) ; \quad P_{3}=(3,2)$
62. $P_{1}=(7,2) ; \quad P_{2}=(-4,0) ; \quad P_{3}=(4,6)$
63. Baseball A major league baseball "diamond" is actually a square 90 feet on a side (see the figure). What is the distance directly from home plate to second base (the diagonal of the square)?

64. Little League Baseball The layout of a Little League playing field is a square 60 feet on a side. How far is it directly from home plate to second base (the diagonal of the square)?
Source: 2018 Little League Baseball Official Regulations, Playing Rules, and Operating Policies
65. Baseball Refer to Problem 63. Overlay a rectangular coordinate system on a major league baseball diamond so that the origin is at home plate, the positive x-axis lies in the direction from home plate to first base, and the positive y-axis lies in the direction from home plate to third base.
(a) What are the coordinates of first base, second base, and third base? Use feet as the unit of measurement.
(b) If the right fielder is located at $(310,15)$ how far is it from the right fielder to second base?
(c) If the center fielder is located at $(300,300)$, how far is it from the center fielder to third base?
66. Little League Baseball Refer to Problem 64. Overlay a rectangular coordinate system on a Little League baseball diamond so that the origin is at home plate, the positive x-axis lies in the direction from home plate to first base, and the positive y-axis lies in the direction from home plate to third base.
(a) What are the coordinates of first base, second base, and third base? Use feet as the unit of measurement.
(b) If the right fielder is located at $(180,20)$, how far is it from the right fielder to second base?
(c) If the center fielder is located at $(220,220)$, how far is it from the center fielder to third base?
67. Distance between Moving Objects A Ford Focus and a Freightliner Cascadia truck leave an intersection at the same time. The Focus heads east at an average speed of 60 miles per hour, while the Cascadia heads south at an average speed of 45 miles per hour. Find an expression for their distance apart d (in miles) at the end of t hours.
68. Distance of a Moving Object from a Fixed Point A hot-air balloon, headed due east at an average speed of 15 miles per hour and at a constant altitude of 100 feet, passes over an intersection (see the figure). Find an expression for the distance d (measured in feet) from the balloon to the intersection t seconds later.

69. Drafting Error When a draftsman draws three lines that are to intersect at one point, the lines may not intersect as intended and subsequently will form an error triangle. If this error triangle is long and thin, one estimate for the location of the desired point is the midpoint of the shortest side. The figure shows one such error triangle.

(a) Find an estimate for the desired intersection point.
(b) Find the distance from $(1.4,1.3)$ to the midpoint found in part (a).
70. Net Sales The figure illustrates the net sales growth of Costco Wholesale Corporation from 2013 through 2017. Use the midpoint formula to estimate the net sales of Costco Wholesale Corporation in 2015. How does your result compare to the reported value of $\$ 113.67$ billion?
Source: Costco Wholesale Corporation 2017 Annual Report

Costco Wholesale Corporation

71. Poverty Threshold Poverty thresholds are determined by the U.S. Census Bureau. A poverty threshold represents the minimum annual household income for a family not to be considered poor. In 2009, the poverty threshold for a family of four with two children under the age of 18 years was $\$ 21,756$. In 2017, the poverty threshold for a family of four with two children under the age of 18 years was $\$ 24,858$.

Assuming that poverty thresholds increase in a straight-line fashion, use the midpoint formula to estimate the poverty threshold for a family of four with two children under the age of 18 in 2013. How does your result compare to the actual poverty threshold in 2013 of $\$ 23,624$?
Source: U.S. Census Bureau
72. Challenge Problem Geometry Verify that the points $(0,0),(a, 0)$, and $\left(\frac{a}{2}, \frac{\sqrt{3} a}{2}\right)$ are the vertices of an equilateral triangle. Then show that the midpoints of the three sides are the vertices of a second equilateral triangle.
73. Challenge Problem Geometry Find the midpoint of each diagonal of a square with side of length s. Draw the conclusion that the diagonals of a square intersect at their midpoints.
[Hint: Use $(0,0),(0, s),(s, 0)$, and (s, s) as the vertices of the square.]
74. Challenge Problem Geometry A point P is equidistant from $(-5,1)$ and $(4,-4)$. Find the coordinates of P if its y-coordinate is twice its x-coordinate.
75. Challenge Problem Geometry For any parallelogram, prove that the sum of the squares of the lengths of the sides equals the sum of the squares of the lengths of the diagonals.
[Hint: Use $(0,0),(a, 0),(a+b, c)$, and (b, c) as the vertices of the parallelogram. Assume a, b, and c are positive.]

Explaining Concepts: Discussion and Writing

76. Write a paragraph that describes a Cartesian plane. Then write a second paragraph that describes how to plot points in the Cartesian plane. Your paragraphs should include
the terms "coordinate axes," "ordered pair," "coordinates," "plot," " x-coordinate," and " y-coordinate."

'Are You Prepared?' Answers

1. 0
2. 8
3. 5
4. $11^{2}+60^{2}=121+3600=3721=61^{2}$
5. $\frac{1}{2} b h$
6. True

1.2 Graphs of Equations in Two Variables; Intercepts; Symmetry

PREPARING FOR THIS SECTION Before getting started, review the following:

- Solving Linear Equations (Section A.6, pp. A44-A45)
- Solve a Quadratic Equation by Factoring (Section A.6, pp. A47-A48)

Now Work the 'Are You Prepared?' problems on page 17.
OBJECTIVES 1 Graph Equations by Plotting Points (p. 10)
2 Find Intercepts from a Graph (p.12)
3 Find Intercepts from an Equation (p.12)
4 Test an Equation for Symmetry with Respect to the x-Axis, the y-Axis, and the Origin (p.13)
5 Know How to Graph Key Equations (p. 15)

[^0]: am Now Work Problem 15

[^1]: *Named after René Descartes (1596-1650), a French mathematician, philosopher, and theologian.

